Herz

, Volume 36, Issue 3, pp 190–197 | Cite as

Second- and third-generation drug-eluting coronary stents

Progress and safety
  • I. Akin
  • H. Schneider
  • H. Ince
  • S. Kische
  • T.C. Rehders
  • T.  Chatterjee
  • C.A.  Nienaber
Main topic/CME

Abstract

Drug-eluting stents (DES) have revolutionized the treatment of coronary artery disease by reducing the rate of in-stent restenosis from 20–40% with bare-metal stent (BMS) to 6–8% with DES. However, with widespread use of DES, safety concerns have risen due to the observation of late stent thrombosis. With this in mind and better understanding of mechanism and pathophysiology of stent thrombosis, the technological platform, especially innovative anti-restenotic agents, polymeric coatings, and stent platforms, improved with newer DES. Two second-generation DES, the Endeavor zotarolimus-eluting stent (ZES) and the Xience-V everolimus-eluting stent (EES), have provided promising results in both randomized controlled trials (SPIRIT and ENDEAVOR) and registries (E-Five, COMPARE) compared with bare-metal stents (BMS) and first-generation DES. Newer third-generation stent technology, especially biodegradable polymers, polymer-free stents, and biodegradable stents on the basis of poly-L-lactide (PLLA) or magnesium, has been evaluated in preclinical and initial clinical trials. However, despite encouraging initial results, long-term data of large-scale randomized trials as well as registries comparing them to currently approved first- and second-generation DES are still lacking.

Keywords

Drug-eluting stent Everolimus Zotarolimus Bioabsorbable Stent thrombosis 

Medikamentenbeschichtete Stents der 2. und 3. Generation

Vorteile und Sicherheit

Zusammenfassung

Der Einsatz der medikamentenbeschichteten Stents (DES) hat die interventionelle Therapie der koronaren Herzkrankheit durch Abnahme der Restenoserate, die bei unbeschichteten Stents (BMS) bei 20–40% lag, auf 6–8% reduziert. Mit dem verbreiteten Einsatz und angesichts der Beobachtung von späten Stent-Thrombosen kamen Bedenken hinsichtlich der Sicherheit für die Patienten auf. Das wachsende pathophysiologische Verständnis für die Ursachen von Stent-Thrombosen hat zu einer Weiterentwicklung der Stents, insbesondere der antiproliferativen Medikamente, der Polymerbeschichtung, und des Stent-Plattform, geführt. Beide DES der 2. Generation, der Zotarolimus-beschichtete (ZES) Endeavor-Stent sowie der Everolimus-beschichtete (EES) Xience-V-Stent, liefern sowohl in randomisierten kontrollierten Studien (SPIRIT, ENDEAVOR) als auch in Registern (E-Five, COMPARE) beim Vergleich mit den unbeschichteten Stents (BMS) und den DES der 1. Generation erfolgversprechende Ergebnisse und höhere Sicherheit für Patienten. Neuere Stent-Technologien der 3. Generation, insbesondere biodegradierbare Polymere, polymerfreie Stents sowie biodegradierbare Stents auf Basis von Poly-L-Lactidsäure (PLLA) oder Magnesium, wurden in präklinischen und ersten klinischen Studien untersucht. Trotz vielversprechender Ergebnisse fehlen noch Langzeitergebnisse von größeren Patientenkollektiven, die mit dieser neueren Stent-Konzeption behandelt wurden.

Schlüsselwörter

Medikamentenbeschichtete Stents Everolimus Zotarolimus Biodegradierbare Stents Stentthrombose 

Notes

Conflict of interests

The corresponding author states that there are no conflicts of interest.

References

  1. 1.
    Stone GW, Moses JW, Ellis SG et al (2007) Safety and efficacy of sirolimus-and paclitaxel-eluting coronary stents. N Engl J Med 356:998–1008PubMedCrossRefGoogle Scholar
  2. 2.
    Stettler C, Wandel S, Allemann S et al (2007) Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370:937–948PubMedCrossRefGoogle Scholar
  3. 3.
    Nienaber CA, Akin I, Schneider S et al (2009) Clinical outcomes after sirolimus-eluting, paclitaxel-eluting and bare-metal stents (from the first phase of the prospective multicenter German DES.DE registry. Am J Cardiol 104:1362–1369PubMedCrossRefGoogle Scholar
  4. 4.
    Pfisterer M, Brunner-La Rocca HP, Buser PT et al (2006) Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J Am Coll Cardiol 48:2584–2591PubMedCrossRefGoogle Scholar
  5. 5.
    Lagerqvist B, James SK, Stenestrand U et al (2007) Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N Engl J Med 356:1009–1019PubMedCrossRefGoogle Scholar
  6. 6.
    Kirtane AJ, Gupta A, Iyengar S et al (2009) Safety and efficacy of drug-eluting and bare metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation 119:3198–3206PubMedCrossRefGoogle Scholar
  7. 7.
    Mauri L, Hsieh WH, Massaro JM et al (2007) Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med 356:1020–1029PubMedCrossRefGoogle Scholar
  8. 8.
    Finn AV, Kolodgie FD, Harnek J et al (2005) Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation 112:270–278PubMedCrossRefGoogle Scholar
  9. 9.
    Virmani R, Guagliumi G, Farb A et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109:701–705Google Scholar
  10. 10.
    Iakovou I, Schmidt T, Bonizzoni E et al (2005) ncidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293:2126–2130PubMedCrossRefGoogle Scholar
  11. 11.
    Daemen J, Wenaweser P, Tsuchida K et al (2007) Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369:667–678PubMedCrossRefGoogle Scholar
  12. 12.
    Wenaweser P, Daemen J, Zwahlen M et al (2008) Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 52:1134–1140PubMedCrossRefGoogle Scholar
  13. 13.
    Garg P, Cohen DJ, Gaziano T, Mauri L (2008) Balancing the risks of restenosis and stent thrombosis in bare-metal versus drug-eluting stents: results of a decision analytic model. J Am Coll Cardiol 51:1844–1853PubMedCrossRefGoogle Scholar
  14. 14.
    Stone GW, Ellis SG, Colombo A et al (2007) Offsetting impact of thrombosis and restenosis on the occurrence of death and myocardial infarction after paclitaxel-eluting and bare metal stent implantation. Circulation 115:2842–2847PubMedCrossRefGoogle Scholar
  15. 15.
    Virmani R, Liistro F, STankovic G et al (2002) Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation 106:2649–2651PubMedCrossRefGoogle Scholar
  16. 16.
    Joner M, Finn AV, Farb A et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48:193–202PubMedCrossRefGoogle Scholar
  17. 17.
    Kastrati A, Mehilli J, Dirschinger J et al (2001) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821PubMedGoogle Scholar
  18. 18.
    Popma JJ, Mauri L, O‘Shaughnessy C et al (2009) Frequency and clinical consequences associated with sidebranch occlusion during stent implantation using zotarolimus-eluting and paclitaxel-eluting coronary stents. Circ Cardiovasc Interv 2:133–139PubMedCrossRefGoogle Scholar
  19. 19.
    Meredith IT, Ormiston J, Whitbourn R et al (2005) First-in-human study of the Endeavor ABT-578-eluting phosphorylcholine-encapsulated stent system in de novo native coronary artery lesions: Endeavor I Trial. EuroIntervention 1:157–164PubMedGoogle Scholar
  20. 20.
    Awata M, Nanto S, Uematsu M et al (2008) Angioscopic comparison of neointimal coverage between zotarolimus- and sirolimus-eluting stents. J Am Coll Cardiol 52:789–790PubMedCrossRefGoogle Scholar
  21. 21.
    Guagliumi G, Sirbu V, Musumeci G et al (2010) Strut coverage and vessel wall response to a new-generation paclitaxel-eluting stent with an ultrathin biodegradable abluminal polymer: Optical Coherence Tomography Drug-Eluting STent Investigation (OCTDESI). Circ Cardiovasc Interv 3:367–375PubMedCrossRefGoogle Scholar
  22. 22.
    Fajadet J, Wijns W, Laarman GJ et al (2006) domized, double-blind, multicenter study of the Endeavor zotarolimus-eluting phosphorylcholine-encapsulated stent for treatment of native coronary artery lesions: clinical and angiographic results of the ENDEAVOR II trial. Circulation 114:798–806PubMedCrossRefGoogle Scholar
  23. 23.
    Kandzari DE, Leon MB, Popma JJ et al (2006) Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease: a randomized controlled trial. J AM Coll Cardiol 48:2440–2447PubMedCrossRefGoogle Scholar
  24. 24.
    Leon MB, Mauri L, Popma JJ et al (2010) A randomized comparison of the ENDEAVOR zotarolimus-eluting stent versus the TAXUS paclitaxel-eluting stent in de novo native coronary lesions 12-month outcomes from the ENDEAVOR IV trial. J Am Coll Cardiol 55:543–554PubMedCrossRefGoogle Scholar
  25. 25.
    Rasmussen K, Maeng M, Kaltoft A et al (2010) Efficacy and safety of zotarolimus-eluting and sirolimus-eluting coronary stents in routine clinical care (SORT-OUT III): a randomised controlled superiority trial. Lancet 375:1090–1099PubMedCrossRefGoogle Scholar
  26. 26.
    Lotan C, Meredith IT, Liu M et al (2009) Safety and effectiveness of the Endeavor zotarolimus-eluting stent in real-world clinical practice: 12-month data from the E-Five Registry. J Am Coll Cardiol Interv 2:1227–1235Google Scholar
  27. 27.
    Camenzind E, Wijns W, Mauri L et al (2009) Rationale and design of the Patient Related OuTcomes with Endeavor versus Cypher stenting Trial (PROTECT): randomized controlled trial comparing the incidence of stent thrombosis and clinical events after sirolimus or zotarolimus drug-eluting stent implantation. Am Heart J 158:902–909PubMedCrossRefGoogle Scholar
  28. 28.
    Serruys PW, Ong AT, Piek JJ et al (2005) A randomized comparison of a durable polymer Everolimus-eluting stent with a bare metal coronary stent: The SPIRIT first trial. EuroIntervention 1:58–65PubMedGoogle Scholar
  29. 29.
    Joner M, Nakazawa G, Finn AV et al (2008) Endothelial cell recovery between comparator polymer-based drug-eluting stents. J Am Coll Cardiol 52:333–342PubMedCrossRefGoogle Scholar
  30. 30.
    Wiemer M, Serruys PW, Miquel-Hebert K et al (2010) Five-year long-term clinical follow-up of the XIENCE V everolimus eluting coronary stent system in the treatment of patients with de novo coronary artery lesions: the SPIRIT FIRST trial. Catheter Cardiovasc Interv 75:997–1003PubMedGoogle Scholar
  31. 31.
    Garg S, Serruys PW, Onuma Y et al (2009) 3-year clinical follow-up of the XIENCE V everolimus-eluting coronary stent system in the treatment of patients with de novo coronary artery lesions: the SPIRIT II trial (Clinical Evaluation of the Xience V Everolimus Eluting Coronary STent System in the Treatment of Patients with de novo Native Coronary Artery Lesions). JACC Cardiovasc Interv 2:1190–1198PubMedCrossRefGoogle Scholar
  32. 32.
    Stone GW, Midei M, Newman W et al (2008) Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease: a randomized trial. JAMA 299:1903–1913PubMedCrossRefGoogle Scholar
  33. 33.
    Kedhi E, Joesoef KS, McFadden E et al (2010) Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial. Lancet 375:201–209PubMedCrossRefGoogle Scholar
  34. 34.
    Nienaber CA (2010) Everolimus or paclitaxel-eluting stent: go COMPARE. Lancet 375:174–176PubMedCrossRefGoogle Scholar
  35. 35.
    Claessen BE, Beijk MA, Legrand V et al (2009) Two-year clinical, angiographic, and intravascular ultrasound follow-up of the XIENCE V everolimus-eluting stent in the treatment of patients with de novo native coronary artery lesions: the SPIRIT II trial. Circ Cardiovasc Interv 2:339–347PubMedCrossRefGoogle Scholar
  36. 36.
    Stone GW, Rizvi A, Newman W et al (2010) Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N Engl J Med 362:1663–1674PubMedCrossRefGoogle Scholar
  37. 37.
    Lansky AJ, Applegate R, Hermiller JB et al (2009) Side-branch occlusion with Xience V everolimus-eluting and Taxus Express2 paclitaxel-eluting stents: two-year results from the SPIRIT III randomized trial. Am J Cardiol 104(Suppl 6A):135DGoogle Scholar
  38. 38.
    Torre Hernández JM de la, Alfonso F, Gimeno F et al (2010) Thrombosis of second-generation drug-eluting stents in real practice results from the multicenter Spanish registry ESTROFA-2 (Estudio Espanol SObre Trombosis de Stents Farmacoactivos de Segunda Generacion-2). JACC Cardiovasc Interv 3:911–919CrossRefGoogle Scholar
  39. 39.
    Serruys PW, Silber S, Garg S et al (2010) Comparison of zotarolimus-eluting and everolimus-eluting coronary stents. N Engl J Med 363:136–146PubMedCrossRefGoogle Scholar
  40. 40.
    Meredith IT, Worthley S, Whitbourn R et al (2007) The next-generation Endeavor Resolute stent: 4-month clinical and angiographic results from the Endeavor Resolute first-in-man trial. EuroIntervention 3:50–53PubMedGoogle Scholar
  41. 41.
    Windecker S, Serruys PW, Wandel S et al (2008) Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. Lancet 372:1163–1173PubMedCrossRefGoogle Scholar
  42. 42.
    Barlis P, Regar E, Serruys PW et al (2010) An optical coherence tomography study of a biodegradable vs. durable polymer-coated limus-eluting stent: a LEADERS trial sub-study. Eur Heart J 31:165–176PubMedCrossRefGoogle Scholar
  43. 43.
    Mehilli J, Kastrati A, Wessely R et al (2006) Randomized trial of a nonpolymer-based rapamycin-eluting stent versus a polymer-based paclitaxel-eluting stent for the reduction of late lumen loss. Circulation 113:273–279PubMedCrossRefGoogle Scholar
  44. 44.
    Ruef J, Störger H, Schwarz F, Haase J (2008) Comparison of a polymer-free rapamycin-eluting stent (YUKON) with a polymer-based paclitaxel-eluting stent (TAXUS) in real-world coronary artery lesions. Catheter Cardiovasc Interv 71:333–339PubMedCrossRefGoogle Scholar
  45. 45.
    Ormiston JA, Serruys PW, Regar E et al (2008) A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371:899–907PubMedCrossRefGoogle Scholar
  46. 46.
    Onuma Y, Serruys PW, Ormiston JA et al (2010) Three-year results of clinical follow-up after a bioresorbable everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention 6:447–453PubMedCrossRefGoogle Scholar
  47. 47.
    Erbel R, Di Mario C, Bartunek J et al (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel, Muenchen 2011

Authors and Affiliations

  • I. Akin
    • 1
  • H. Schneider
    • 1
  • H. Ince
    • 1
  • S. Kische
    • 1
  • T.C. Rehders
    • 1
  • T.  Chatterjee
    • 1
  • C.A.  Nienaber
    • 1
  1. 1.Heart Center RostockDepartment of Internal Medicine IUniversity Hospital RostockRostockDeutschland

Personalised recommendations