Advertisement

Artificial intelligence in orthodontics

Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network
  • Felix KunzEmail author
  • Angelika Stellzig-Eisenhauer
  • Florian Zeman
  • Julian Boldt
Arnold-Biber Research Award

Abstract

Purpose

The aim of this investigation was to create an automated cephalometric X‑ray analysis using a specialized artificial intelligence (AI) algorithm. We compared the accuracy of this analysis to the current gold standard (analyses performed by human experts) to evaluate precision and clinical application of such an approach in orthodontic routine.

Methods

For training of the network, 12 experienced examiners identified 18 landmarks on a total of 1792 cephalometric X‑rays. To evaluate quality of the predictions of the AI, both AI and each examiner analyzed 12 commonly used orthodontic parameters on a basis of 50 cephalometric X‑rays that were not part of the training data for the AI. Median values of the 12 examiners for each parameter were defined as humans’ gold standard and compared to the AI’s predictions.

Results

There were almost no statistically significant differences between humans’ gold standard and the AI’s predictions. Differences between the two analyses do not seem to be clinically relevant.

Conclusions

We created an AI algorithm able to analyze unknown cephalometric X‑rays at almost the same quality level as experienced human examiners (current gold standard). This study is one of the first to successfully enable implementation of AI into dentistry, in particular orthodontics, satisfying medical requirements.

Keywords

Deep learning Algorithms Machine learning Medical imaging Cephalometric X‑rays 

Künstliche Intelligenz in der Kieferorthopädie

Evaluierung einer vollständig automatisierten Fernröntgenseitenanalyse unter Anwendung eines individualisierten „convolutional neural network“

Zusammenfassung

Ziel

Ziel der vorliegenden Untersuchung war, eine vollständig automatisierte Fernröntgenseitenanalyse auf Basis eines spezialisierten künstlichen neuronalen Netzwerkes zu entwickeln. Die Genauigkeit dieser Analyse wurde mit der Auswertung menschlicher Experten, dem aktuellem Goldstandard, verglichen, um die Eignung eines solchen Systems zur Verwendung im klinischen Alltag zu überprüfen.

Patienten und Methodik

Für das Training des Netzwerkes wurden auf insgesamt 1792 Fernröntgenseitenbildern jeweils 18 kieferorthopädische Bezugspunkte durch 12 erfahrene Untersucher markiert. Zur Beurteilung der Auswertungsqualität des trainierten Netzwerkes wurden an 50 weiteren Fernröntgenseitenbildern, die nicht Teil der Trainingsdaten waren, sowohl durch die Künstliche Intelligenz (KI) als auch durch jeden der Untersucher 12 gängige kephalometrische Messungen durchgeführt. Als Goldstandard wurde für jeden Parameter der Medianwert der Untersucher definiert, welcher dann mit den Auswertungen der KI verglichen wurde.

Ergebnisse

Zwischen den Auswertungen der KI und dem menschlichen Goldstandard konnten nahezu keine statistisch signifikanten Unterschiede festgestellt werden. Sofern Unterschiede zwischen beiden Auswertungsmethoden bestanden, konnten diese als klinisch irrelevant betrachtet werden.

Schlussfolgerungen

Im Rahmen der vorliegenden Untersuchung war es möglich, ein künstliches neuronales Netzwerk darauf zu trainieren, unbekannte Fernröntgenseitenbilder in annähernd derselben Qualität wie der eines erfahrenen Klinikers auszuwerten. Diese Studie ist einer der ersten erfolgreichen Ansätze, künstliche neuronale Netzwerke in der Zahnmedizin, speziell in der Kieferorthopädie, zu integrieren.

Schlüsselwörter

Tiefgehendes Lernen Algorithmen Automatisiertes Lernen Medizinische Bildgebung Fernröntgenseitenbild 

Notes

Conflict of interest

F. Kunz, A. Stellzig-Eisenhauer, F. Zeman and J. Boldt declare that they have no competing interests.

References

  1. 1.
    Arik SO, Ibragimov B, Xing L (2017) Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging 4:14501CrossRefGoogle Scholar
  2. 2.
    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRefGoogle Scholar
  3. 3.
    Bland JM, Altman DG (2003) Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol 22:85–93CrossRefGoogle Scholar
  4. 4.
    Broadbent B (1931) A new X‑ray technique and its application to orthodontia. Angle Orthod 1:45–66Google Scholar
  5. 5.
    Cardillo J, Sid-Ahmed MA (1994) An image processing system for locating craniofacial landmarks. IEEE Trans Med Imaging 13:275–289CrossRefGoogle Scholar
  6. 6.
    Ciresan DC, Meier U, Masci J, Gambardella LM, Schmidhuber J (2011) Flexible, high performance convolutional neural networks for image classification. Paper presented at the Proceedings of the Twenty-Second international joint conference on Artificial Intelligence, Barcelona. vol 2Google Scholar
  7. 7.
    Desvignes M, Romaniuk B, Clouard R, Demoment R, Revenu M, Deshayes MJ (2000) First steps toward automatic location of landmarks on X‑ray images. In: Proceedings 15th International Conference on Pattern Recognition ICPR-2000, 3–7 Sept. 2000, pp 275–278Google Scholar
  8. 8.
    Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Lituiev D, Copeland TP, Aboian MS, Aparici CM, Behr SC, Flavell RR, Huang S‑Y, Zalocusky KA, Nardo L, Seo Y, Hawkins RA, Pampaloni MH, Hadley D, Franc BL (2019) A deep learning model to predict a diagnosis of alzheimer disease by using 18F-FDG PET of the brain. Radiology 290:456–464CrossRefGoogle Scholar
  9. 9.
    Dreyer KJ, Geis JR (2017) When machines think: radiology’s next frontier. Radiology 285:713–718CrossRefGoogle Scholar
  10. 10.
    El-Feghi I, Sid-Ahmed MA, Ahmadi M (2004) Automatic localization of craniofacial landmarks for assisted cephalometry. Pattern Recognit 37:609–621CrossRefGoogle Scholar
  11. 11.
    Forsyth DB, Davis DN (1996) Assessment of an automated cephalometric analysis system. Eur J Orthod 18:471–478CrossRefGoogle Scholar
  12. 12.
    Fu Jie H, LeCun Y (2006) Large-scale learning with SVM and convolutional for generic object categorization. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR′06) 17–22 June 2006, pp 284–291Google Scholar
  13. 13.
    Fukushima K (1975) Cognitron: a self-organizing multilayered neural network. Biol Cybern 20:121–136CrossRefGoogle Scholar
  14. 14.
    Gonçalves FA, Schiavon L, Pereira Neto JS, Nouer DF (2006) Comparison of cephalometric measurements from three radiological clinics. Braz Oral Res 20:162–166CrossRefGoogle Scholar
  15. 15.
    Hinton G, Sejnowski TJ (1999) Unsupervised learning: foundations of neural computation. MIT Press, Cambridge, MACrossRefGoogle Scholar
  16. 16.
    Kahn CE Jr. (2017) From images to actions: opportunities for artificial intelligence in radiology. Radiology 285:719–720CrossRefGoogle Scholar
  17. 17.
    Kamoen A, Dermaut L, Verbeeck R (2001) The clinical significance of error measurement in the interpretation of treatment results. Eur J Orthod 23:569–578CrossRefGoogle Scholar
  18. 18.
    Kaur A, Singh C (2013) Automatic cephalometric landmark detection using Zernike moments and template matching vol 9Google Scholar
  19. 19.
    Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. Paper presented at the Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe. vol 1Google Scholar
  20. 20.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRefGoogle Scholar
  21. 21.
    Lee JH, Kim DH, Jeong SN, Choi SH (2018) Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 77:106–111CrossRefGoogle Scholar
  22. 22.
    Levy-Mandel AD, Venetsanopoulos AN, Tsotsos JK (1986) Knowledge-based landmarking of cephalograms. Comput Biomed Res 19:282–309CrossRefGoogle Scholar
  23. 23.
    Liu JK, Chen YT, Cheng KS (2000) Accuracy of computerized automatic identification of cephalometric landmarks. Am J Orthod Dentofacial Orthop 118:535–540CrossRefGoogle Scholar
  24. 24.
    Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning. MIT Press, Cambridge, MAGoogle Scholar
  25. 25.
    Nebauer C (1998) Evaluation of convolutional neural networks for visual recognition. IEEE Trans Neural Netw 9:685–696CrossRefGoogle Scholar
  26. 26.
    Nishimoto S, Sotsuka Y, Kawai K, Ishise H, Kakibuchi M (2019) Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J Craniofac Surg 30:91–95CrossRefGoogle Scholar
  27. 27.
    Parthasarathy S, Nugent ST, Gregson PG, Fay DF (1989) Automatic landmarking of cephalograms. Comput Biomed Res 22:248–269CrossRefGoogle Scholar
  28. 28.
    Ronneberger O, Fischer P, Brox T (2015) U‑net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention MICCAI 2015. Springer, Cham, pp 234–241Google Scholar
  29. 29.
    Russell S, Norvig P (2010) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  30. 30.
    Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting vol 15Google Scholar
  31. 31.
    Tong W, Nugent ST, Jensen GM, Fay DF (1989) An algorithm for locating landmarks on dental X‑rays. IEEE, 552–554,  https://doi.org/10.1109/IEMBS.1989.95869
  32. 32.
    Vial A, Stirling D, Field M, Ros M, Ritz C, Carolan M, Holloway L, Miller AA (2018) The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. Transl Cancer Res 7:803–816CrossRefGoogle Scholar
  33. 33.
    Wang CW, Huang CT, Hsieh MC, Li CH, Chang SW, Li WC, Vandaele R, Maree R, Jodogne S, Geurts P, Chen C, Zheng G, Chu C, Mirzaalian H, Hamarneh G, Vrtovec T, Ibragimov B (2015) Evaluation and comparison of anatomical landmark detection methods for cephalometric X‑Ray images: a grand challenge. IEEE Trans Med Imaging 34:1890–1900CrossRefGoogle Scholar
  34. 34.
    Yang X, Wu N, Cheng G, Zhou Z, Yu DS, Beitler JJ, Curran WJ, Liu T (2014) Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy. Int J Radiat Oncol Biol Phys 90:1225–1233CrossRefGoogle Scholar
  35. 35.
    Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O (2018) Deep learning with convolutional neural network in radiology. Jpn J Radiol 36:257–272CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Poliklinik für KieferorthopädieUniversitätsklinikum WürzburgWürzburgGermany
  2. 2.Zentrum für Klinische StudienUniversitätsklinikum RegensburgRegensburgGermany
  3. 3.Poliklinik für Zahnärztliche ProthetikUniversitätsklinikum WürzburgWürzburgGermany

Personalised recommendations