Advertisement

Dehiscence and fenestration in anterior teeth

Comparison before and after orthodontic treatment
  • Yan Sheng
  • Hong-Ming GuoEmail author
  • Yu-Xing Bai
  • Song Li
Original Article
  • 93 Downloads

Abstract

Background

Previous studies have reported incidence rates of dehiscence (DEH) and fenestration (FEN) as high as 36.51 and 51.09%, respectively. Only a few studies comparing DEH and FEN before and after orthodontic treatment (OT) are available in the literature.

Purpose

The aim of this study was to evaluate the occurrence of DEH and FEN in anterior teeth, before and after OT, using cone-beam computed tomography (CBCT). In addition, findings may provide a clinical basis for avoiding DEH and FEN during therapeutic tooth alignment.

Patients and methods

CBCT images of 21 patients near the end of their peak growth and development were included. DEH and FEN in the anterior teeth and thicknesses of the alveolar bone at the palatal (TP) and labiolingual (LL) sides of each anterior tooth were measured before and after OT.

Results

After OT, the incidence rates of mandibular anterior labial DEH, maxillary anterior TP-bone defect, and mandibular anterior lingual bone defect were increased by 20, 19, and 30%, respectively. Assessment of CT images prior to treatment showed that the teeth developing bone defects were significantly different regarding the apical alveolar bone thicknesses compared to the teeth that did not develop bone defects after OT, i.e., the incidence of DEH and FEN after OT was lower if the thickness of the apex to labiolingual alveolar bone before OT was as follows: the apex to labial alveolar bone thickness of the maxillary central incisor and maxillary lateral incisor was >4 mm, the apex to palatal alveolar bone thickness of the maxillary lateral incisor was >3 mm; the apex to labiolingual alveolar bone thickness of the lower incisor was >5 mm.

Conclusion

The incidence of post-OT DEH at the maxillary anterior and mandibular anterior lingual surfaces were increased significantly compared to before treatment. In general, the smaller the apex to labiolingual alveolar bone thickness, the greater the likelihood of bone defects occurring after OT. Evaluation of the apical position of anterior teeth in alveolar bone can help minimize the occurrence of bone defects after OT.

Keywords

Alveolar bone defects Cone-beam computed tomography Mandible Molar Maxilla Orthodontic appliances 

Dehiszenz und Fenestration im Frontzahnbereich

Vergleich vor und nach kieferorthopädischer Behandlung

Zusammenfassung

Hintergrund

Frühere Studien haben für Dehiszenzen (DEH) und Fenestrationen (FEN) Inzidenzraten von 36,51 bzw. 51,09% angegeben. In der Literatur sind nur wenige Studien verfügbar, die DEH und FEN vor und nach einer kieferorthopädischen Behandlung (OT) vergleichen.

Zweck

Ziel dieser Studie war es, das Auftreten von DEH und FEN im Frontzahnbereich vor und nach OT mittels digitaler Volumentomographie (DVT) zu untersuchen. Darüber hinaus können die Ergebnisse eine klinische Grundlage für die Vermeidung von DEH und FEN während therapeutischer Zahnbogenausformung bilden.

Patienten und Methoden

Für diese Studie wurden DVT-Aufnahmen von 21 Patienten nahe dem Abschluss ihres Wachstumsgipfels ausgewählt. DEH und FEN im Frontzahnbereich sowie die Dicke des Alveolarknochens an den palatinalen (TP) und der labiolingualen (LL) Seiten jedes Frontzahns wurden vor und nach OT ermittelt.

Ergebnisse

Nach OT stiegen die Inzidenzraten der DEH im labialen Unterkieferfrontzahnbereich sowie der anterioren TP-Knochendefekte im Oberkieferfrontzahnbereich und schließlich der lingualen Knochendefekte des Unterkieferfrontzahnbereichs um 20, 19 bzw. 30% an. Die Auswertung prätherapeutischer CT-Aufnahmen zeigte, dass sich die Zähne, die nach OT Knochendefekte entwickeln, hinsichtlich der apikalen alveolären Knochendicken signifikant von denen unterschieden, die nach OT keine Knochendefekte entwickeln. DEH und FEN nach OT traten seltener auf bei folgenden Abständen zwischen Wurzelspitze und Alveolarknochen vor OT: oberer mittlerer Schneidezahn und oberer seitlicher Schneidezahn mit labiolingualer Alveolarknochendicke >4 mm, oberer seitlicher Schneidezahn mit palatinaler alveolärer Knochendicke >3 mm; unterer Schneidezahn und labiolingualer alveolärer Knochendicke >5 mm.

Fazit

Im Vergleich zur Ausgangssituation stiegen die Inzidenzraten der DEH nach OT an den maxillären anterioren sowie den mandibulären anterior-lingualen Flächen signifikant an. Im Allgemeinen gilt: Je kleiner die Alveolarknochendicke von der Wurzelspitze zum labiolingualen Knochenrand, desto größer ist die Wahrscheinlichkeit des Auftretens von Knochendefekten nach OT. Eine Evaluierung der apikalen Position der Frontzähne im Alveolarknochen kann hilfreich sein, um das Auftreten von Knochendefekten nach OT zu minimieren.

Schlüsselwörter

Alveolarknochendefekte Digitale Volumentomographie Mandibula Molar Maxilla Kieferorthopädische Apparaturen  

Notes

Acknowledgements

This study was supported by Beijing Science and Technology Committee (Grant Fund No. Z171100001017046) and National High Technology Research and Development Program of China (863 Program, Grant Fund No. 2013AA040803).

Conflict of interest

Y. Sheng, H.-M. Guo, Y.-X. Bai and S. Li declare that they have no competing interests.

References

  1. 1.
    Evangelista K, Vasconcelos Kde F, Bumann A, Hirsch E, Nitka M, Silva MA (2010) DEH and FEN in patients with Class I and Class II Division 1 malocclusion assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 138:133.e1–133.e7.  https://doi.org/10.1016/j.ajodo.2010.02.021 (discussion 133–135)CrossRefGoogle Scholar
  2. 2.
    Levander E, Malmgren O (1988) Evaluation of the risk of root resorption during orthodontic treatment: a study of upper incisors. Eur J Orthod 10:30–38.  https://doi.org/10.1093/ejo/10.1.30 CrossRefPubMedGoogle Scholar
  3. 3.
    Ramanathan C, Hofman Z (2006) Root resorption in relation to orthodontics movement. Acta Medica 49:91–95.  https://doi.org/10.14712/18059694.2017.117 CrossRefPubMedGoogle Scholar
  4. 4.
    Sameshima GT, Sinclair PM (2001) Predicting and preventing root resorption: part I. Disgnostic factors. Am J Orthod Dentofacial Orthop 119:505–510.  https://doi.org/10.1067/mod.2001.113409 CrossRefPubMedGoogle Scholar
  5. 5.
    Kalkwarf KL, Krejci RF, Pao YC (1986) Effect of apical root resorption on periodontal support. J Prosthet Dent 56:317–319.  https://doi.org/10.1016/0022-3913(86)90011-9 CrossRefPubMedGoogle Scholar
  6. 6.
    Krieger E, Drechsler T, Schmidtmann I, Jacobs C, Haag S, Wehrbein H (2013) Apical root resorption during orthodontic treatment with aligners? A retrospective radiometric study. Head Face Med 9:21.  https://doi.org/10.1186/1746-160X-9-21 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kook YA, Kim G, Kim Y (2012) Comparison of alveolar bone loss around incisors in normal occlusion samples and surgical skeletal class III patients. Angle Orthod 82:645–652.  https://doi.org/10.2319/070111-424.1 CrossRefPubMedGoogle Scholar
  8. 8.
    Enhos S, Uysal T, Yagci A, Veli İ, Ucar FI, Ozer T (2012) Dehiscence and fenestration in patients with different vertical growth patterns assessed with cone-beam computed tomography. Angle Orthod 82:868–874.  https://doi.org/10.2319/111211-702.1 CrossRefPubMedGoogle Scholar
  9. 9.
    Rupprecht RD, Horning GM, Nicoll BK, Cohen ME (2001) Prevalence of dehiscences and fenestrations in modern American skulls. J Periodontol 72:722–729.  https://doi.org/10.1902/jop.2001.72.6.722 CrossRefPubMedGoogle Scholar
  10. 10.
    Lund H, Gröndahl K, Gröndahl HG (2012) Cone beam computed tomography evaluations of marginal alveolar bone before and after orthodontic treatment combined with premolar extractions. Eur J Oral Sci 120:201–211.  https://doi.org/10.1111/j.1600-0722.2012.00964.x CrossRefPubMedGoogle Scholar
  11. 11.
    Yu Q, Pan XG, Ji GP, Shen G (2009) The association between lower incisal inclination and morphology of the supporting alveolar bone—a cone-beam CT study. Int J Oral Sci 1:217–223.  https://doi.org/10.4248/IJOS09047 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kim Y, Park JU, Kook YA (2009) Alveolar bone loss around incisors in surgical skeletal Class III patients: a retrospective 3D CBCT study. Angle Orthod 79:676–682.  https://doi.org/10.2319/070308-341.1 CrossRefPubMedGoogle Scholar
  13. 13.
    Nimigean VR, Nimigean V, Bencze MA, Dimcevici-Poesina N, Cergan R, Moraru S (2009) Alveolar bone dehiscences and fenestrations: an anatomical study and review. Rom J Morphol Embryol 50:391–397PubMedGoogle Scholar
  14. 14.
    Fuhrmann R (1996) Three-dimensional interpretation of periodontal lesions and remodeling during orthodontic treatment. Part III. J Orofac Orthop 57:224–237CrossRefGoogle Scholar
  15. 15.
    Lee KM, Kim YI, Park SB, Son WS (2012) Alveolar bone loss around lower incisors during surgical orthodontic treatment in mandibular prognathism. Angle Orthod 82:637–644.  https://doi.org/10.2319/081711-526.1 CrossRefPubMedGoogle Scholar
  16. 16.
    Handelman CS (1996) The anterior alveolus:its importance in limiting orthodontic treatment and its influence on the occurrence or iatrogenic sequelae. Angle Orthod 66:95–109 (discussion 109–110)PubMedGoogle Scholar
  17. 17.
    Patcas R, Müller L, Ullrich O, Peltomäki T (2012) Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. Am J Orthod Dentofacial Orthop 141:41–50.  https://doi.org/10.1016/j.ajodo.2011.06.034 CrossRefPubMedGoogle Scholar
  18. 18.
    Fuhrmann R (1996) Three-dimensional interpretation of alveolar bone dehiscences. an anatomical-radiological study—part I. J Orofac Orthop 57:62–74CrossRefGoogle Scholar
  19. 19.
    Leung CC, Palomo L, Griffith R, Hans MG (2010) Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am J Orthod Dentofacial Orthop 137:S109–S119.  https://doi.org/10.1016/j.ajodo.2009.07.013 CrossRefPubMedGoogle Scholar
  20. 20.
    Fuhrmann R (1996) Three-dimensional interpretation of labiolingual bone width of the lower incisors. Part II. J Orofac Orthop 57:168–185CrossRefGoogle Scholar
  21. 21.
    Damstra J, Fourie Z, Huddleston Slater JJ, Ren Y (2010) Accuracy of linear measurements from cone-beam tomography-derived surface models of different voxel sizes. Am J Orthod Dentofacial Orthop 137:16.e1–16.e6.  https://doi.org/10.1016/j.ajodo.2009.06.016 (discussion 16–17)CrossRefGoogle Scholar
  22. 22.
    Timock AM, Cook V, McDonald T, Leo MC, Crowe J, Benninger BL, Covell DA Jr (2011) Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. Am J Orthod Dentofacial Orthop 140:734–744.  https://doi.org/10.1016/j.ajodo.2011.06.021 CrossRefPubMedGoogle Scholar
  23. 23.
    Brown AA, Scarfe WC, Scheetz JP, Silveira AM, Farman AG (2009) Linear accuracy of cone beam CT derived 3D images. Angle Orthod 79:150–157.  https://doi.org/10.2319/122407-599.1 CrossRefPubMedGoogle Scholar
  24. 24.
    Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG (2008) Linear accuracy and reliability of cone beam CT derived 3‑dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 78:387–395.  https://doi.org/10.2319/122106-52.1 CrossRefPubMedGoogle Scholar
  25. 25.
    Fuhrmann RAW (2002) Three-dimensional evaluation of periodontalremodeling during orthodontic treatment. Semin Orthod 8:23–28.  https://doi.org/10.1053/sodo.2002.28168 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Yan Sheng
    • 1
    • 2
  • Hong-Ming Guo
    • 1
    Email author
  • Yu-Xing Bai
    • 1
  • Song Li
    • 1
  1. 1.Department of OrthodonticsCapital Medical University School of StomatologyBeijingChina
  2. 2.Department of StomatologyBeijing Friendship Hospital Capital Medical UniversityBeijingChina

Personalised recommendations