Advertisement

Molecular biology of periodontal ligament fibroblasts and orthodontic tooth movement

Evidence and possible role of the circadian rhythm
  • David Andreas HilbertEmail author
  • Svenja Memmert
  • Jana Marciniak
  • Andreas Jäger
Original Article
  • 40 Downloads

Abstract

Purpose

The circadian clock plays an important role in many physiological states and pathologies. The significance of its core genes in bone formation and tooth development has already been demonstrated. However, regulation of these genes and their influence on periodontal and bone remodeling in periodontal ligament (PDL) fibroblasts remains to be elucidated. Our hypothesis was that the circadian clock influences markers for periodontal and bone remodeling and therefore orthodontic tooth movement itself.

Materials and methods

Human PDL fibroblasts were cultured and synchronized in circadian rhythms with the help of a dexamethasone shock. Cells were harvested at 4 h intervals. Reverse transcription and quantitative RT PCR (real time polymerase chain reaction) were performed to assess the mRNA levels of the clock genes ARNTL, CLOCK1, PER1, and PER2. Subsequently, mRNA expression of important marker genes for periodontal and bone remodeling, OPG, RANKL, OCN, OPN, RUNX2, COL1A1, IL1β, KI67, and POSTN, were examined at time points of ARNTL amplitude expression.

Results

Gene expression of core clock genes varied over 48 h in accordance with the circadian rhythm. Functional markers, except KI67, showed significant differences at time points of maximum fluctuation especially of ARNTL.

Conclusions

PDL fibroblasts express circadian clock genes. Our results suggest that genes associated with bone and periodontal remodeling are influenced by the circadian rhythm. Further research will have to refine the understanding of this influence for orthodontic treatment.

Keywords

Chronobiology Circadian rhythm signaling peptides and proteins Orthodontics Tooth movement ARNTL transcription factors 

Molekularbiologie von parodontalen Ligamentfibroblasten und kieferorthopädische Zahnbewegung

Evidenz und mögliche Bedeutung der zirkadianen Rhythmik

Zusammenfassung

Ziel

Die zirkadiane Rhythmik spielt eine wichtige Rolle im Rahmen sowohl physiologischer als auch pathologischer Prozesse. Eine Bedeutung der Core-Clock-Gene für die Knochenbildung und die Zahnentwicklung konnte bereits dargestellt werden. Eine Regulation dieser Gene und ihr Einfluss auf das parodontale und ossäre Remodeling durch PDL(paradontale Ligament)-Fibroblasten wurde jedoch noch nicht näher untersucht. Unsere Hypothese war, dass die zirkadiane Uhr wichtige Faktoren des parodontalen wie des ossären Remodeling beeinflusst und damit auch die kieferorthopädische Zahnbewegung selbst.

Material und Methoden

Humane PDL-Fibroblasten wurden kultiviert und mithilfe eines Dexamethasonschocks in ihren zirkadianen Rhythmen synchronisiert. Die Zellen wurden in 4‑Stunden-Intervallen geerntet. Reverse Transkription und quantitative RT-PCR („real time polymerase chain reaction“) wurden durchgeführt, um die Genexpression der Core-Clock-Gene ARNTL, CLOCK1, PER1 und PER2 zu bestimmen. Anschließend wurde die Genexpression wichtiger Marker für das parodontale und ossäre Remodeling wie OPG, RANKL, OCN, OPN, RUNX2, COL1A1, IL1β, KI67, POSTN zu Zeitpunkten der maximalen bzw. minimalen Expression der ARNTL-Genexpression untersucht.

Ergebnisse

Die Genexpression von Core-Clock-Genen variierte über 48 h entsprechend dem zirkadianen Rhythmus. Alle funktionellen Marker, bis auf KI67, zeigten signifikante Unterschiede zu Zeitpunkten der maximalen bzw. minimalen Expression von ARNTL.

Schlussfolgerungen

PDL-Fibroblasten exprimieren Gene der zirkadianen Uhr. Unsere Ergebnisse deuten darauf hin, dass Gene, die mit ossärem und parodontalem Remodeling assoziiert sind, durch die zirkadiane Rhythmik beeinflusst werden. Weitere Forschungen werden das Verständnis dieses Einflusses auf die kieferorthopädische Behandlung vertiefen müssen.

Schlüsselwörter

Chronobiologie Zirkadiane Rhythmik, Signalpeptide und -proteine Kieferorthopädie Zahnbewegung ARNTL-Transkriptionsfaktor 

Notes

Acknowledgements

The authors would like to thank Prof. Helmut Stark, Ms. Silke van Dyck and Ms. Inka Bay for their valuable support.

Conflict of interest

D.A. Hilbert, S. Memmert, J. Marciniak and A. Jäger declare that they have no competing interests.

References

  1. 1.
    Asiry MA (2018) Biological aspects of orthodontic tooth movement: a review of literature. Saudi J Biol Sci 25:1027–1032.  https://doi.org/10.1016/j.sjbs.2018.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Athanassiou-Papaefthymiou M, Kim D, Harbon L, Papagerakis S, Schnell S, Harada H, Papagerakis P (2011) Molecular and circadian controls of ameloblasts. Eur J Oral Sci 119:35–40.  https://doi.org/10.1111/j.1600-0722.2011.00918.x CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Balsalobre A (2002) Clock genes in mammalian peripheral tissues. Cell Tissue Res 309:193–199.  https://doi.org/10.1007/s00441-002-0585-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937.  https://doi.org/10.1016/S0092-8674(00)81199-X CrossRefPubMedGoogle Scholar
  5. 5.
    Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by Glucocorticoid signaling. Science 289:2344–2347.  https://doi.org/10.1126/science.289.5488.2344 CrossRefPubMedGoogle Scholar
  6. 6.
    Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat‑1 fibroblasts. Curr Biol 10:1291–1294.  https://doi.org/10.1016/S0960-9822(00)00758-2 CrossRefPubMedGoogle Scholar
  7. 7.
    Bargiello TA, Jackson FR, Young MW (1984) Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312:752–754.  https://doi.org/10.1038/312752a0 CrossRefPubMedGoogle Scholar
  8. 8.
    Cable EJ, Onishi KG, Prendergast BJ (2017) Circadian rhythms accelerate wound healing in female Siberian hamsters. Physiol Behav 171:165–174.  https://doi.org/10.1016/j.physbeh.2016.12.019 CrossRefPubMedGoogle Scholar
  9. 9.
    Chung CJ, Soma K, Rittling SR, Denhardt DT, Hayata T, Nakashima K, Ezura Y, Noda M (2008) OPN deficiency suppresses appearance of odontoclastic cells and resorption of the tooth root induced by experimental force application. J Cell Physiol 214:614–620.  https://doi.org/10.1002/jcp.21250 CrossRefPubMedGoogle Scholar
  10. 10.
    Damiola F, Minh NL, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961.  https://doi.org/10.1101/gad.183500 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    de Araujo RMS, Oba Y, Kuroda S, Tanaka E, Moriyama K (2014) RhoE regulates actin cytoskeleton organization in human periodontal ligament cells under mechanical stress. Arch Oral Biol 59:187–192.  https://doi.org/10.1016/j.archoralbio.2013.11.010 CrossRefPubMedGoogle Scholar
  12. 12.
    Fleissig O, Reichenberg E, Tal M, Redlich M, Barkana I, Palmon A (2018) Morphologic and gene expression analysis of periodontal ligament fibroblasts subjected to pressure. Am J Orthod Dentofacial Orthop 154:664–676.  https://doi.org/10.1016/j.ajodo.2018.01.017 CrossRefPubMedGoogle Scholar
  13. 13.
    Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF (2015) Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun 45:171–179.  https://doi.org/10.1016/j.bbi.2014.11.009 CrossRefPubMedGoogle Scholar
  14. 14.
    Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350CrossRefGoogle Scholar
  15. 15.
    Gachon F, Leuenberger N, Claudel T, Gos P, Jouffe C, Olela FF, de du Jeu XM, Wahli W, Schibler U (2011) Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor α (PPARα) activity. Proc Natl Acad Sci USA 108:4794–4799.  https://doi.org/10.1073/pnas.1002862108 CrossRefPubMedGoogle Scholar
  16. 16.
    Ghazali NB, Steele M, Koh D, Idris A (2017) The diurnal pattern of salivary IL-1β in healthy young adults. Int J Adolesc Med Health.  https://doi.org/10.1515/ijamh-2017-0058 CrossRefPubMedGoogle Scholar
  17. 17.
    Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19:453–469.  https://doi.org/10.1038/s41583-018-0026-z CrossRefPubMedGoogle Scholar
  18. 18.
    He Y, Macarak EJ, Korostoff JM, Howard PS (2004) Compression and tension: differential effects on matrix accumulation by periodontal ligament Fibroblasts in vitro. Connect Tissue Res 45:28–39.  https://doi.org/10.1080/03008200490278124 CrossRefPubMedGoogle Scholar
  19. 19.
    Hoyle NP, Seinkmane E, Putker M, Feeney KA, Krogager TP, Chesham JE, Bray LK, Thomas JM, Dunn K, Blaikley J, O’Neill JS (2017) Circadian actin dynamics drive rhythmic fibroblast mobilisation during wound healing. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aal2774 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hughes S, Jagannath A, Hankins MW, Foster RG, Peirson SN (2015) Chapter six—photic regulation of clock systems. In: Sehgal A (ed) Methods in Enzymology, circadian rhythms and biological clocks, part B. Academic Press, Cambridge, pp 125–143  https://doi.org/10.1016/bs.mie.2014.10.018 CrossRefGoogle Scholar
  21. 21.
    Iwasaki K, Nagata M, Akazawa K, Watabe T, Morita I (2018) Changes in characteristics of periodontal ligament stem cells in spheroid culture. J Periodont Res.  https://doi.org/10.1111/jre.12637 CrossRefPubMedGoogle Scholar
  22. 22.
    Janjić K, Kurzmann C, Moritz A, Agis H (2017) Expression of circadian core clock genes in fibroblasts of human gingiva and periodontal ligament is modulated by L‑Mimosine and hypoxia in monolayer and spheroid cultures. Arch Oral Biol 79:95–99.  https://doi.org/10.1016/j.archoralbio.2017.03.007 CrossRefPubMedGoogle Scholar
  23. 23.
    Joseph F, Chan BY, Durham BH, Ahmad AM, Vinjamuri S, Gallagher JA, Vora JP, Fraser WD (2007) The circadian rhythm of Osteoprotegerin and its association with parathyroid hormone secretion. J Clin Endocrinol Metab 92:3230–3238.  https://doi.org/10.1210/jc.2006-1832 CrossRefPubMedGoogle Scholar
  24. 24.
    Kaneda T, Miyauchi M, Takekoshi T, Kitagawa S, Kitagawa M, Shiba H, Kurihara H, Takata T (2006) Characteristics of periodontal ligament subpopulations obtained by sequential enzymatic digestion of rat molar periodontal ligament. Bone 38:420–426.  https://doi.org/10.1016/j.bone.2005.08.021 CrossRefPubMedGoogle Scholar
  25. 25.
    Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce Osteoclastogenesis by receptor activator of nuclear factor κB Ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17:210–220.  https://doi.org/10.1359/jbmr.2002.17.2.210 CrossRefPubMedGoogle Scholar
  26. 26.
    Karsenty G (2008) Transcriptional control of Skeletogenesis. Annu Rev Genom Hum Genet 9:183–196.  https://doi.org/10.1146/annurev.genom.9.081307.164437 CrossRefGoogle Scholar
  27. 27.
    Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk H‑D, Kramer A, Maier B (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci USA 106:21407–21412.  https://doi.org/10.1073/pnas.0906361106 CrossRefPubMedGoogle Scholar
  28. 28.
    Kwon YS, Jang JS, Hwang SM, Tark H, Kim JH, Lee JJ (2019) Effects of surgery start time on postoperative cortisol, inflammatory cytokines, and postoperative hospital day in hip surgery. Medicine (Baltimore).  https://doi.org/10.1097/MD.0000000000015820 CrossRefGoogle Scholar
  29. 29.
    Lamia KA, Storch K‑F, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 105:15172–15177.  https://doi.org/10.1073/pnas.0806717105 CrossRefPubMedGoogle Scholar
  30. 30.
    Lee C, Etchegaray J‑P, Cagampang FRA, Loudon ASI, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867.  https://doi.org/10.1016/S0092-8674(01)00610-9 CrossRefPubMedGoogle Scholar
  31. 31.
    Lemmer B, Oster H (2018) The role of circadian rhythms in the hypertension of diabetes mellitus and the metabolic syndrome. Curr Hypertens Rep 20:43.  https://doi.org/10.1007/s11906-018-0843-5 CrossRefPubMedGoogle Scholar
  32. 32.
    MacNeil RL, Somerman MJ (1999) Development and regeneration of the periodontium: parallels and contrasts. Periodontol 2000 19:8–20.  https://doi.org/10.1111/j.1600-0757.1999.tb00144.x CrossRefPubMedGoogle Scholar
  33. 33.
    Masella RS, Meister M (2006) Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 129:458–468.  https://doi.org/10.1016/j.ajodo.2005.12.013 CrossRefPubMedGoogle Scholar
  34. 34.
    Matsuo A, Togashi A, Sasaki K, Devkota B, Hirata T, Yamagaishi N (2014) Diurnal variation of plasma bone markers in Japanese black calves. J Vet Med Sci 76:1029–1032.  https://doi.org/10.1292/jvms.14-0021 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mazzoccoli G, Vinciguerra M, Papa G, Piepoli A (2014) Circadian clock circuitry in colorectal cancer. World J Gastroenterol 20:4197–4207.  https://doi.org/10.3748/wjg.v20.i15.4197 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240.  https://doi.org/10.1093/ejo/cjl001 CrossRefPubMedGoogle Scholar
  37. 37.
    Miyoshi K, Igarashi K, Saeki S, Shinoda H, Mitani H (2001) Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied. Eur J Orthod 23:329–338CrossRefGoogle Scholar
  38. 38.
    Müssig E, Tomakidi P, Steinberg T (2005) Molecules contributing to the maintenance of periodontal tissues. J Orofac Orthop 66:422–433.  https://doi.org/10.1007/s00056-005-0520-6 CrossRefPubMedGoogle Scholar
  39. 39.
    Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual Fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705.  https://doi.org/10.1016/j.cell.2004.11.015 CrossRefGoogle Scholar
  40. 40.
    Pavasant P, Yongchaitrakul T (2011) Role of mechanical stress on the function of periodontal ligament cells. Periodontol 2000 56:154–165.  https://doi.org/10.1111/j.1600-0757.2010.00374.x CrossRefPubMedGoogle Scholar
  41. 41.
    Papagerakis S, Zheng L, Schnell S, Sartor MA, Somers E, Marder W, McAlpin B, Kim D, McHugh J, Papagerakis P (2014) The circadian clock in oral health and diseases. J Dent Res 93:27–35.  https://doi.org/10.1177/0022034513505768 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45.  https://doi.org/10.1093/nar/29.9.e45 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pitaru S, McCulloch CG, Narayanan SA (1994) Cellular origins and differentiation control mechanisms during periodontal development and wound healing. J Periodontal Res 29:81–94.  https://doi.org/10.1111/j.1600-0765.1994.tb01095.x CrossRefPubMedGoogle Scholar
  44. 44.
    Reale ME, Webb IC, Wang X, Baltazar RM, Coolen LM, Lehman MN (2013) The transcription factor Runx2 is under circadian control in the Suprachiasmatic nucleus and functions in the control of rhythmic behavior. Plos One.  https://doi.org/10.1371/journal.pone.0054317 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y, Gonzalez FJ, Lilley KS, Kyriacou CP, Hastings MH (2007) Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45:1478–1488.  https://doi.org/10.1002/hep.21571 CrossRefPubMedGoogle Scholar
  46. 46.
    Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, Hall JC, Rosbash M (1984) Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38:701–710.  https://doi.org/10.1016/0092-8674(84)90265-4 CrossRefPubMedGoogle Scholar
  47. 47.
    Reinke H, Ashe G (2016) Circadian clock control of liver metabolic functions. Baillieres Clin Gastroenterol 150:574–580.  https://doi.org/10.1053/j.gastro.2015.11.043 CrossRefGoogle Scholar
  48. 48.
    Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676.  https://doi.org/10.1146/annurev.physiol.63.1.647 CrossRefPubMedGoogle Scholar
  49. 49.
    Reinhardt ÉL, Fernandes PACM, Markus RP, Fischer FM (2018) Night work effects on salivary cytokines TNF, IL-1β and IL‑6. Chronobiol Int:1–16.  https://doi.org/10.1080/07420528.2018.1515771 CrossRefPubMedGoogle Scholar
  50. 50.
    Romanos GE, Asnani KP, Hingorani D, Deshmukh VL (2014) PERIOSTIN: role in formation and maintenance of dental tissues. J Cell Physiol 229:1–5.  https://doi.org/10.1002/jcp.24407 CrossRefPubMedGoogle Scholar
  51. 51.
    Satomura K, Tobiume S, Tokuyama R, Yamasaki Y, Kudoh K, Maeda E, Nagayama M (2007) Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res 42:231–239.  https://doi.org/10.1111/j.1600-079X.2006.00410.x CrossRefPubMedGoogle Scholar
  52. 52.
    Satyanarayanan SK, Su H, Su Y‑WL, Su K‑P (2018) Circadian rhythm and Melatonin in the treatment of depression Curr pharmaceutical design. http://www.eurekaselect.com/164317/article. Accessed 18 Aug 2018Google Scholar
  53. 53.
    Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13:190–198.  https://doi.org/10.1038/nri3386 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Schroeder HE, Listgarten MA (1997) The gingival tissues: the architecture of periodontal protection. Periodontol 2000 13:91–120.  https://doi.org/10.1111/j.1600-0757.1997.tb00097.x CrossRefPubMedGoogle Scholar
  55. 55.
    Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, Hu JC‑C (2010) Regulation of dental enamel shape and hardness. J Dent Res 89:1024–1038.  https://doi.org/10.1177/0022034510375829 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    So AY‑L, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ (2009) Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci USA 106:17582–17587.  https://doi.org/10.1073/pnas.0909733106 CrossRefPubMedGoogle Scholar
  57. 57.
    Srivastava AK, Bhattacharyya S, Li X, Mohan S, Baylink DJ (2001) Circadian and longitudinal variation of serum C‑telopeptide, osteocalcin, and skeletal alkaline phosphatase in C3H/HeJ mice. Bone 29:361–367.  https://doi.org/10.1016/S8756-3282(01)00581-6 CrossRefPubMedGoogle Scholar
  58. 58.
    Takahashi M, Tahara Y, Tsubosaka M, Fukazawa M, Ozaki M, Iwakami T, Nakaoka T, Shibata S (2018) Chronotype and social jetlag influence human circadian clock gene expression. Sci Rep.  https://doi.org/10.1038/s41598-018-28616-2 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Takarada T, Xu C, Ochi H, Nakazato R, Yamada D, Nakamura S, Kodama A, Shimba S, Mieda M, Fukasawa K, Ozaki K, Iezaki T, Fujikawa K, Yoneda Y, Numano R, Hida A, Tei H, Takeda S, Hinoi E (2016) Bone Resorption is regulated by circadian clock in Osteoblasts. J Bone Miner Res 32:872–881.  https://doi.org/10.1002/jbmr.3053 CrossRefGoogle Scholar
  60. 60.
    Vansant L, Cadenas De Llano-Pérula M, Verdonck A, Willems G (2018) Expression of biological mediators during orthodontic tooth movement: a systematic review. Arch Oral Biol 95:170–186.  https://doi.org/10.1016/j.archoralbio.2018.08.003 CrossRefPubMedGoogle Scholar
  61. 61.
    Vitaterna MH, King DP, Chang A‑M, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264:719–725CrossRefGoogle Scholar
  62. 62.
    Walker CG, Dangaria S, Ito Y, Luan X, Diekwisch TGH (2010) Osteopontin is required for unloading-induced osteoclast recruitment and modulation of RANKL expression during tooth drift-associated bone remodeling, but not for super-eruption. Bone 47:1020–1029.  https://doi.org/10.1016/j.bone.2010.08.025 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang Y, Hua L, Lu C, Chen Z (2011) Expression of circadian clock gene human Period2 (hPer2) in human colorectal carcinoma. World J Surg Oncol 9:166.  https://doi.org/10.1186/1477-7819-9-166 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K, Yasuda A, Mamine T, Takumi T (2005) Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a Glucocorticoid-responsive element. J Biol Chem 280:42036–42043.  https://doi.org/10.1074/jbc.M509600200 CrossRefPubMedGoogle Scholar
  65. 65.
    Ye H, Yang K, Tan X‑M, Fu X‑J, Li H‑X (2015) Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma. Onco Targets Ther 8:1419–1426.  https://doi.org/10.2147/OTT.S83710 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci USA 111:16219–16224.  https://doi.org/10.1073/pnas.1408886111 CrossRefPubMedGoogle Scholar
  67. 67.
    Zhou X, Yu R, Long Y, Zhao J, Yu S, Tang Q, Chen L (2018) BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation. Cell Prolif 51:e12470.  https://doi.org/10.1111/cpr.12470 CrossRefPubMedGoogle Scholar
  68. 68.
    Zieker D, Jenne I, Koenigsrainer I, Zdichavsky M, Nieselt K, Buck K, Zieker J, Beckert S, Glatzle J, Spanagel R, Koenigsrainer A, Northoff H, Loeffler M (2010) Circadian expression of clock- and tumor Suppressor genes in human oral Mucosa. Cell Physiol Biochem 26:155–166.  https://doi.org/10.1159/000320547 CrossRefPubMedGoogle Scholar
  69. 69.
    Zylka MJ, Shearman LP, Weaver DR, Reppert SM (1998) Three period Homologs in Mammals: Differential Light Responses in the Suprachiasmatic Circadian Clock and Oscillating Transcripts Outside of Brain. Neuron 20:1103–1110.  https://doi.org/10.1016/S0896-6273(00)80492-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • David Andreas Hilbert
    • 1
    Email author
  • Svenja Memmert
    • 2
    • 3
  • Jana Marciniak
    • 2
  • Andreas Jäger
    • 2
  1. 1.Department of Prosthodontics, Preclinical Education and Dental Materials ScienceUniversity of BonnBonnGermany
  2. 2.Department of Orthodontics, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany
  3. 3.Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany

Personalised recommendations