Comparison of force loss due to friction of different wire sizes and materials in conventional and new self-ligating orthodontic brackets during simulated canine retraction

  • Tarek El-BialyEmail author
  • Ahmad Alobeid
  • Cornelius Dirk
  • Andreas Jäger
  • Ludger Keilig
  • Christoph Bourauel
Original Article



The aim of this study was to compare force loss due to friction (Fr) during simulated canine retraction using different archwire dimensions and materials between conventional and new self-ligating brackets.


The tested brackets were (1) conventional brackets (Victory series, GAC twin and FLI twin), (2) self-ligating brackets (Damon-Q, FLI-SL, new/improved FLI-SL (I FLI-SL), SPEED, GAC innovation (R) and Ortho Classic) and (3) a low-friction bracket (Synergy). All brackets had a 0.022″ slot size. The tested archwires were stainless steel (0.018″; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ and 0.019″x0.025″); nickel titanium (NiTi; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ and 0.019″x0.025″) and titanium molybdenum alloy (TMA; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ and 0.019″x0.025″). Canine retraction was experimentally simulated in a biomechanical set-up using a NiTi coil spring that delivered a force of 1 N. The simulated retraction path was up to 4 mm. Force loss due to friction was compared between groups using the Welch t‑test.


Force loss due to friction increased with increasing archwire size. Also, TMA showed the highest and stainless steel the lowest force loss due to friction. FLI-SL brackets showed the lowest Fr (31%) and Ortho Classic showed the highest (67%).


Increasing wire size generally showed increasing force loss due to friction. FLI-SL brackets showed the lowest, while Ortho Classic showed the highest friction.


Friction Orthodontic archwires Orthodontic brackets Conventional brackets Self-ligating brackets 

Vergleich des Kraftverlustes aufgrund von Friktion verschiedener Bogendimensionen und -materialien in konventionellen und neuen selbstligierenden Brackets während der simulierten Eckzahnretraktion



Ziel der vorliegenden Studie war der Vergleich des Kraftverlustes durch Friktion (Fr) im Zuge der simulierten Eckzahnretraktion. Dabei kamen unterschiedliche Bogendimensionen und -materialien sowie konventionelle und selbstligierende Brackets zum Einsatz.


Die getesteten Brackets waren (1) konventionelle Brackets (Victory series, GAC twin nd FLI twin), (2) selbstligierende Brackets (Damon-Q, FLI-SL, new/improved FLI-SL (I FLI-SL), SPEED, GAC innovation (R) und Ortho Classic) und (3) ein Low-Friction-Bracket (Synergy). Alle Brackets hatten einen 0.022″ Slot. Die getesteten Bögen waren aus Stahl (0.018″; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ und 0.019″x0.025″); Nickel-Titan (NiTi; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ und 0.019″x0.025″) und Titan-Molybdän (TMA; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ und 0.019″x0.025″). Die Eckzahnretraktion wurde experimentell in einem biomechanischen Versuchsaufbau unter Verwendung einer NiTi-Feder, die eine Kraft von 1 N generierte, simuliert. Der simulierte Retraktionsweg betrug bis zu 4 mm. Der Kraftverlust durch Friktion wurde zwischen den Gruppen mit dem Welch-t-Test verglichen.


Kraftverluste durch Friktion nahmen mit steigendem Bogendurchmesser zu. TMA zeigte den höchsten und Stahl den niedrigsten Kraftverlust. FLI-SL Brackets wiesen den niedrigsten Reibungsverlust (31%) und Ortho Classic den höchsten Wert auf (67%).


Generell waren zunehmende Bogendimensionen mit zunehmendem Kraftverlust infolge Friktion verknüpft. FLI-SL Brackets wiesen die niedrigste, Ortho Classic die höchste Friktion auf.


Friktion Orthodontischer Bogen Orthodontisches Bracket Konventionelles Bracket Selbstligierendes Bracket 



This study was supported by Alexander von Humboldt Foundation, Germany.

Compliance with ethical guidelines

Conflict of interest

T. El-Bialy, A. Alobeid, C. Dirk, A. Jäger, L. Keilig and C. Bourauel declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Alobeid A, El-Bialy T, Khawatmi S, Dirk C, Jäger A, Bourauel C (2017) Comparison of the force levels among labial and lingual self-ligating and conventional brackets in simulated misaligned teeth. Eur J Orthod 39:419–425CrossRefGoogle Scholar
  2. 2.
    Andreasen GF, Quevedo FR (1970) Evaluation of friction forces in the 0.022 x 0.028 edgewise bracket in vitro. J Biomech 3:151–156CrossRefGoogle Scholar
  3. 3.
    Articolo L, Kusy R (1999) Influence of angulation on the resistance of sliding in fixed appliances. Am J Orthod Dentofacial Orthop 115:39–51CrossRefGoogle Scholar
  4. 4.
    Bednar JR, Gruendeman GW, Sandrik JL (1991) A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 100:513–522CrossRefGoogle Scholar
  5. 5.
    Berger LJ (1990) The influence of the SPEED bracket’s self-ligating design on force levels in tooth movement: A comparative in vitro study. Am J Orthod Dentofacial Orthop 97:219–228CrossRefGoogle Scholar
  6. 6.
    Bourauel C, Drescher D, Thier M (1990) Kraft-Momenten-Aufnehmer für die Kieferorthopädie. Feinwerktech Messtech 98:419–422Google Scholar
  7. 7.
    Bourauel C, Drescher D, Thier M (1992) An experimental apparatus for the simulation of three-dimensional movements in orthodontics. J Biomed Eng 14:371–378CrossRefGoogle Scholar
  8. 8.
    Braun S, Bluestein M, Moore K, Benson G (1999) Friction in perspective. Am J Orthod Dentofacial Orthop 115:619–627CrossRefGoogle Scholar
  9. 9.
    Burrow SJ (2009) Friction and resistance to sliding in orthodontics: A critical review. Am J Orthod Dentofacial Orthop 135:442–447CrossRefGoogle Scholar
  10. 10.
    Cacciafesta V, Sfondrini MF, Ricciardi A, Scribante A, Klersy C, Auricchio F (2003) Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. Am J Orthod Dentofacial Orthop 124:395–402CrossRefGoogle Scholar
  11. 11.
    Dholakia KD (2012) Friction and anchorage loading revisited. Orthodontics (Chic) 13:200–209Google Scholar
  12. 12.
    Drescher D, Bourauel C, Schumacher HA (1990) The loss of force by friction in arch-guided tooth movement. Fortschr Kieferorthop 51:99–105CrossRefGoogle Scholar
  13. 13.
    Drescher D, Bourauel C, Thier M (1991) Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 13:169–178CrossRefGoogle Scholar
  14. 14.
    Ehsani S, Mandich M, El-Bialy TH, Flores-Mir C (2009) Frictional resistance in self-ligating orthodontic brackets and conventionally ligated brackets: A systematic review. Angle Orthod 79:592–601Google Scholar
  15. 15.
    Feynman RP, Leighton RB, Sands M (2010) Mainly mechanics, radiation, and heat. Feynman lectures on physics. The new millenium edition, vol 1. Perseus Books, Philadelphia, pp 12-3–12-6Google Scholar
  16. 16.
    Griffiths HS, Sherriff M, Ireland AJ (2005) Resistance to sliding with 3 types of elastomeric modules. Am J Orthod Dentofacial Orthop 127:670–675CrossRefGoogle Scholar
  17. 17.
    Hain M, Dhopatkar A, Rock P (2006) A comparison of different ligation methods on friction. Am J Orthod Dentofacial Orthop 130:666–670CrossRefGoogle Scholar
  18. 18.
    Halazonetis DJ (2007) Friction might increase anchorage loading. Am J Orthod Dentofacial Orthop 131:699–700CrossRefGoogle Scholar
  19. 19.
    Henriques JFC, Higa RH, Semenara NT, Janson G, Fernandes TMF, Sathler R (2017) Evaluation of deflection forces of orthodontic wires with different ligation types. Braz Oral Res 31:e49CrossRefGoogle Scholar
  20. 20.
    Husmann P, Bourauel C, Wessinger M, Jäger A (2002) The frictional behavior of coated guiding archwires. J Orofac Orthop 63:199–211CrossRefGoogle Scholar
  21. 21.
    Jost-Brinkmann P, Miethke RR (1991) The effect of physiological tooth mobility on the friction between the bracket and the arch. Fortschr Kieferorthop 52:102–109CrossRefGoogle Scholar
  22. 22.
    Kim TK, Kim KD, Baek SH (2008) Comparison of frictional forces during the initial leveling stage in various combinations of self-ligating brackets and archwires with a custom-designed typodont system. Am J Orthod Dentofacial Orthop 133(187):e15–e24Google Scholar
  23. 23.
    Kusy RP, Whitley JQ (1990) Effects of surface roughness on the coefficients of friction in model orthodontic systems. J Biomech 23:913–925CrossRefGoogle Scholar
  24. 24.
    Kusy RP, Whitley JQ (1997) Friction between different wire-bracket configurations and materials. Semin Orthod 3:166–177CrossRefGoogle Scholar
  25. 25.
    Kusy RP, Whitley JQ (1999) Influence of archwire and bracket dimensions on sliding mechanics: Derivations and determinations of the critical contact angles for binding. Eur J Orthod 21:199–208CrossRefGoogle Scholar
  26. 26.
    Kusy RP (2000) Ongoing innovations in biomechanics and materials for the new millennium. Angle Orthod 70:366–376Google Scholar
  27. 27.
    Loftus B, Årtun J, Nichollis J, Alonzo T, Stoner J (1999) Evaluation of friction during sliding tooth movement in various bracket-arch wire combinations. Am J Orthod Dentofacial Orthop 116:336–345CrossRefGoogle Scholar
  28. 28.
    Montasser MA, El-Bialy T, Keilig L, Reimann S, Jäger A, Bourauel C (2014) Force loss in archwire-guided tooth movement of conventional and self-ligating brackets. Eur J Orthod 36:31–38CrossRefGoogle Scholar
  29. 29.
    O’Reilly D, Dowling PA, Lagerström L, Swartz ML (1999) An ex vivo investigation into the effect of bracket displacement on the resistance to sliding. Br J Orthod 26:219–227CrossRefGoogle Scholar
  30. 30.
    Phukaoluan A, Khantachawana A, Kaewtatip P, Dechkunakorn S, Anuwongnukroh N, Santiwong P, Kajornchaiyakul J (2017) Comparison of friction forces between stainless orthodontic steel brackets and TiNi wires in wet and dry conditions. Int Orthod 15:13–24Google Scholar
  31. 31.
    Proffit WR, Fields HW, Ackerman J, Bailey L, Tulloch J (2000) Biomechanics and mechanics. In: Proffit WR, Fields HW (eds) Contemporary orthodontics, 3rd edn. Mosby, St Louis, pp 346–347Google Scholar
  32. 32.
    Rabiee SM, Eftekhari SZ, Arash V, Amozegar N, Fathi A, Tavanafar S, Bijani A (2017) Effect of CO2 laser power intensity on the surface morphology and friction behavior of alumina ceramic brackets. Microsc Res Tech 80:923–929CrossRefGoogle Scholar
  33. 33.
    Reicheneder CA, Baumert U, Gedrange T, Proff P, Faltermeier A, Muessig D (2007) Frictional properties of aesthetic brackets. Eur J Orthod 29:359–365CrossRefGoogle Scholar
  34. 34.
    Riley JL, Garrett SG, Moon PC (1979) Frictional forces of ligated plastic and metal edgewise brackets [Master’s thesis]. Virginia Commonwealth University, Medical College of Virginia, Richmond, VirginiaGoogle Scholar
  35. 35.
    Savoldi F, Visconti L, Dalessandri D, Bonetti S, Tsoi JKH, Matinlinna JP, Paganelli C (2017) In vitro evaluation of the influence of velocity on sliding resistance of stainless steel arch wires in a self-ligating orthodontic bracket. Orthod Craniofac Res 20:119–125CrossRefGoogle Scholar
  36. 36.
    Schumacher HA, Bourauel C, Drescher D (1990) The effect of the ligature on the friction between bracket and arch. Fortschr Kieferorthop 51:106–116CrossRefGoogle Scholar
  37. 37.
    Shivapuja PK, Berger JA (1994) A comparative study of conventional ligation and self-ligation bracket systems. Am J Orthod Dentofacial Orthop 106:472–480CrossRefGoogle Scholar
  38. 38.
    Southard TE, Marshall SD, Grosland NM (2007) Friction does not increase anchorage loading. Am J Orthod Dentofacial Orthop 31:412–414CrossRefGoogle Scholar
  39. 39.
    Sridharan K, Sandbhor S, Rajasekaran UB, Sam G, Ramees MM, Abraham EA (2017) An in vitro evaluation of friction characteristics of conventional stainless steel and self-ligating stainless steel brackets with different dimensions of archwires in various bracket-archwire combination. J Contemp Dent Pract 18:660–664CrossRefGoogle Scholar
  40. 40.
    Wichelhaus A, Geserick M, Hibst R, Sander FG (2005) The effect of surface treatment and clinical use on friction in NiTi orthodontic wires. Dent Mater 21:938–945CrossRefGoogle Scholar
  41. 41.
    Taylor N, Ison K (1996) Frictional resistance between orthodontic brackets and archwires in the buccal segments. Angle Orthod 66:215–221Google Scholar
  42. 42.
    Tecco S, Di Iorio D, Cordasco G, Verrocchi I, Festa F (2007) An in vitro investigation of the influence of self-ligating brackets, low friction ligatures, and archwire on frictional resistance. Eur J Orthod 29:390–397CrossRefGoogle Scholar
  43. 43.
    Thorstenson GA, Kusy RP (2002) Comparison of resistance to sliding between different self-ligating brackets with second order angulation in the dry and saliva states. Am J Orthod Dentofacial Orthop 121:472–482CrossRefGoogle Scholar
  44. 44.
    Tidy D (1989) Frictional forces in fixed appliances. Am J Orthod Dentofacial Orthop 96:249–254CrossRefGoogle Scholar
  45. 45.
    Whitley JQ, Kusy RP (2007) Influence of interbracket distances on the resistance to sliding of orthodontic appliances. Am J Orthod Dentofacial Orthop 132:360–372CrossRefGoogle Scholar
  46. 46.
    Yamaguchi K, Nanda RS, Morimoto N, Oda Y (1996) A study of force application, amount of retarding force, and bracket width in sliding mechanics. Am J Orthod Dentofacial Orthop 109:50–56CrossRefGoogle Scholar
  47. 47.
    Yeh CL, Kusnoto B, Viana G, Evans CA, Drummond JL (2007) In-vitro evaluation of frictional resistance between brackets with passive-ligation designs. Am J Orthod Dentofacial Orthop 131(704):e11–e22Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Tarek El-Bialy
    • 1
    • 2
    • 4
    Email author
  • Ahmad Alobeid
    • 2
  • Cornelius Dirk
    • 2
  • Andreas Jäger
    • 3
  • Ludger Keilig
    • 2
  • Christoph Bourauel
    • 2
  1. 1.Department of Orthodontics, School of DentistryUniversity of AlbertaEdmontonCanada
  2. 2.Oral Technology, School of DentistryUniversity of BonnBonnGermany
  3. 3.Department of Orthodontics, School of DentistryUniversity of BonnBonnGermany
  4. 4.7-020D Katz Group Centre for Pharmacy and Health ResearchUniversity of AlbertaEdmontonCanada

Personalised recommendations