Advertisement

Mechanical properties of multi-force vs. conventional NiTi archwires

  • Luca Lombardo
  • Marianna Ceci
  • Francesco Mollica
  • Valentina Mazzanti
  • Mario Palone
  • Giuseppe Siciliani
Original Article
  • 15 Downloads

Abstract

Aims

Mechanical properties along the length of latest generation “multi-force” archwires were measured and compare with commercially available thermally activated and non-thermally activated nickel-titanium (NiTi) archwires.

Materials and methods

A modified deflection test was used to produce load/deflection curves for different positions along the lengths of a sample of 114 NiTi archwires composed by thermal NiTi, non-thermal NiTi, two types of multi-force NiTi and one type of multi-force copper archwires of various cross-sections (0.016 × 0.016 inch, 0.016 × 0.022 inch, 0.018 × 0.025 inch and 0.019 × 0.025 inch). The length, slope and mean force expressed were calculated from the resulting unloading plateaus, enabling comparison between types of archwire at different points along their lengths.

Results

Among conventional thermal, conventional nonthermal and multiforce archwires, all parameters investigated were statistically different, whereby the performance of the latter was superior. Multi-force archwires displayed 27% and 31% lighter mean forces in the upper and lower arches, respectively, in addition to 62% and 40% reductions in unloading plateau slope and length, respectively, as compared to conventional CuNiTi wires. Comparison of the different types of multi-force wires tested revealed statistically significant differences in the three parameters, depending on the testing position but irrespective of their cross-section.

Conclusions

Although conventional archwires display identical behaviour along their lengths, as advertised the multi-force archwires do indeed exert a progressive force which differs between anterior, medial and posterior sections. The multi-force wires provide lighter, more prolonged and constant forces than conventional wires without cross-section-dependent variation.

Keywords

Multi-force archwire NiTi archwires Unloading plateau slope Orthodontic wires 

Mechanische Eigenschaften von Multi-Force- im Vergleich zu herkömmlichen NiTi-Bögen

Zusammenfassung

Ziel

Die mechanischen Eigenschaften entlang der Multi-Force-Bögen der jüngsten Generation wurden gemessen und mit konventionellen thermisch aktivierten und nichtthermisch aktivierten Nickel-Titan(NiTi)-Bögen verglichen.

Materialien und Methoden

Insgesamt 114 NiTi-Bögen wurden einem modifizierten Biegeversuch unterzogen, um Belastungs-und Deflexionskurven an verschiedenen Positionen entlang der Bögen zu erzeugen. Untersucht wurden Bögen aus thermischem NiTi-, nichtthermischem NiTi-, zwei verschiedene Multi-Force-NiTi-Bögen und ein Multi-Force-Kupfer-Bogen mit verschiedenen Querschnitten (0,016 × 0,016, 0,016 × 0,022, 0,018 × 0,025 und 0,019 × 0,025″). Länge, Steigung und mittlere Kraft wurden aus den resultierenden Entlastungsplateaus berechnet, was einen Vergleich zwischen den Bögen in verschiedenen Bereichen ermöglichte.

Ergebnisse

Konventionelle thermische, konventionelle nichtthermische und Multi-Force-Bögen unterschieden sich hinsichtlich aller untersuchten Parameter statistisch signifikant, wobei die Ergebnisse bei den letztgenannten besser waren. Multi-Force-Bögen für Ober- und Unterkiefer wiesen 27 bzw. 31 % geringere mittlere Kräfte auf, sowie Entlastungsplateaus mit 62 bzw. 40 % weniger Steigung und Länge im Vergleich zu herkömmlichen CoNiTi-Bögen. Der Vergleich der verschiedenen geprüften Multi-Force-Bögen ergab statistisch signifikante Unterschiede bezüglich der drei Parameter, abhängig von der Prüfposition, aber unabhängig von ihrem Querschnitt.

Schlussfolgerungen

Während konventionelle Bögen auf ihrer Länge das gleiche Verhalten zeigen, übten die Multi-Force-Bögen, wie erwartet, tatsächlich progressive, zwischen vorderem, mittlerem und hinterem Abschnitt unterschiedliche Kräfte aus. Die Multi-Force-Drähte bieten leichtere, länger anhaltende und konstantere Kräfte als herkömmliche Drähte ohne querschnittsabhängige Variation.

Schlüsselwörter

Multi-Force-Bogen NiTi-Bogen Steigung des Entlastungsplateaus Kieferorthopädischer Bogen 

Notes

Conflict of interest

L. Lombardo, M. Ceci, F. Mollica, V. Mazzanti, M. Palone and G. Siciliani declare that they have no competing interests.

References

  1. 1.
    Aghili H, Yasssaei S, Ahmadabadi MN, Joshan N (2015) Load deflection characteristics of nickel titanium initial archwires. J Dent 12(9):695–704Google Scholar
  2. 2.
    Andreasen GF, Hilleman TB (1971) An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. J Am Dent Assoc 82(6):1373–1375CrossRefGoogle Scholar
  3. 3.
    Arreghini A, Lombardo L, Mollica F, Siciliani G (2016) Load deflection characteristics of square and rectangular archwires. Int Orthod 14(1):1–14Google Scholar
  4. 4.
    Bartzela TN, Senn C, Wichelhaus A (2007) Load-deflection of superelastic nickel-titanium wires. Angle Orthod 77(6):991–998CrossRefGoogle Scholar
  5. 5.
    Bench RW, Gugino CF, Hilgers JJ (1977) Bioprogressive therapy. J Clin Orthod 11(9):616–627Google Scholar
  6. 6.
    Brantley William A, Eliades T (2001) Orthodontic materials scientific and clinical aspects. Thieme, New YorkGoogle Scholar
  7. 7.
    Cannon JL (1984) Dual-Flex archwires. J Clin Orthod 18(9):648–649Google Scholar
  8. 8.
    Duerig TW, Melton KN, Stockel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Tiptree, Essex, pp 13–20Google Scholar
  9. 9.
    Gatto E, Matarese G, Di Bella G, Nucera R, Borsellino C, Cordasco G (2013) Load- deflection characteristics of superelastic and thermal nickel-titanium wires. Eur J Orthod 35(1):115–123CrossRefGoogle Scholar
  10. 10.
    Ibe DM, Segner D (1998) Superelastic materials displaying different force levels within one archwire. J Orofac Orthop 59(1):29–38CrossRefGoogle Scholar
  11. 11.
    Iijima M, Ohno H, Kawashima I, Endo K, Mizoguchi I (2002) Mechanical behaviour at different temperatures and stresses for superelastic nickel-titanium orthodontic wires having different transformation temperatures. Dent Mater 18(1):88–93CrossRefGoogle Scholar
  12. 12.
    Insabralde NM, Poletti T, Conti AC, Oltramarri-Navarro PV, Lopes MB, Flore-Mir C, de Almeida MR (2014) Comparison of mechanical properties of beta-titanium wires between leveled and unleveled brackets: an in vitro study. Prog Orthod 15(1):42CrossRefGoogle Scholar
  13. 13.
    International Standard Organization (2014) ISO 15841:2014. Dentistry-Wires for use in orthodontics. https://www.iso.org/standard/62223.html. Accessed 16.10.2018Google Scholar
  14. 14.
    Khier SE, Brantley WA, Fournelle RA (1991) Bending properties of superelastic and nonsuperelastic nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop 99(4):310–338CrossRefGoogle Scholar
  15. 15.
    Kusy RP (1997) A review of contemporary archwires: their properties and characteristics. Angle Orthod 67(3):197–207Google Scholar
  16. 16.
    Kusy RP, Whitley JQ (2007) Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires. Am J Orthod Dentofacial Orthop 131(2):229–237CrossRefGoogle Scholar
  17. 17.
    Lombardo L, Marafioti M, Stefanoni F, Mollica F, Siciliani G (2012) Load deflection characteristics and force level of nickel titanium initial archwires. Angle Orthod 82(3):507–521CrossRefGoogle Scholar
  18. 18.
    Lombardo L, Toni G, Stefanoni F, Mollica F, Siciliani G (2013) The effect of temperature on the mechanical behaviour of nickel-titanium orthodontic initial archwires. Angle Orthod 83(2):298–305CrossRefGoogle Scholar
  19. 19.
    Mallory DC, English JD, Powers JM, Brantley WA, Bussa HI (2004) Force-deflection comparison of superelastic nickel-titanium archwires. Am J Orthod Dentofacial Orthop 126(1):110–112CrossRefGoogle Scholar
  20. 20.
    Meling TR, Ødegaard J (2001) The effect of short-term temperature changes on superelastic nichel-titanium archwires activated in orthodontic bending. Am J Orthod Dentofacial Orthop 119(3):263–273CrossRefGoogle Scholar
  21. 21.
    Mirabella AD, Artun J (1995) Risk factors for apical root resorption of maxillary anterior teeth in adult orthodontic patients. Am J Orthod Dentofacial Orthop 108(1):48–55CrossRefGoogle Scholar
  22. 22.
    Miura F, Mogi M, Ohura Y, Hamanaka H (1986) The super-elastic property of Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop 90(1):1–10CrossRefGoogle Scholar
  23. 23.
    Mullins WS, Bagby MD, Norman TL (1996) Mechanical behaviour of thermo- responsive orthodontic archwires. Dent Mater 12(5):308–314CrossRefGoogle Scholar
  24. 24.
    Nakano H, Satoh K, Norris R, Jin T, Kamegai T, Ishikawa F, Katsura H (1999) Mechanical properties of several nichel-titanium alloy wires in three-point bending tests. Am J Orthod Dentofacial Orthop 115(4):390–395CrossRefGoogle Scholar
  25. 25.
    Parvizi F, Rock WP (2003) The load/deflection characteristics of thermally activated orthodontic archwires. Eur J Orthod 25(4):417–421CrossRefGoogle Scholar
  26. 26.
    Proffit WR, Fields HW Jr, Sarver DM (2007) Contemporary orthodontics, 4th edn. Mosby, St. Louis (e-edition)Google Scholar
  27. 27.
    Ren Y, Maltha JC, Kuijpers-Jagtman AM (2003) Optimum force magnitude for orthodontic tooth movement: a systematic literature review. Angle Orthod 73(1):86–92Google Scholar
  28. 28.
    Rygh P (1985) Orthodontic forces and tissue reaction. In: Thilander B, Ronning O (eds) Introduction to orthodontics. Tandlakar Forlaget, Stockholm, pp 205–224Google Scholar
  29. 29.
    Sakima MT, Dalstra M, Melsen B (2006) How does temperature influence the properties of rectangular nickel-titanium wires? Eur J Orthod 28(3):282–291CrossRefGoogle Scholar
  30. 30.
    Thompson WJ (1988) Combination anchorage technique: an update of current mechanics. Am J Orthod Dentofacial Orthop 93(5):363–379CrossRefGoogle Scholar
  31. 31.
    Tonner M, Waters NE (1994) The characteristics of super-elastic Ni-Ti wires in three-point bending. Part I: the effect of temperature. Eur J Orthod 16(5):409–419CrossRefGoogle Scholar
  32. 32.
    Wilkinson P, Dysart PS, Hood JA, Herbison GP (2002) Load-deflection characteristics of superelastic nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop 121(5):483–495CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Luca Lombardo
    • 1
  • Marianna Ceci
    • 1
  • Francesco Mollica
    • 2
  • Valentina Mazzanti
    • 2
  • Mario Palone
    • 1
  • Giuseppe Siciliani
    • 1
  1. 1.Department of OrthodonticsUniversity of FerraraFerraraItaly
  2. 2.Department of EngineeringUniversity of FerraraFerraraItaly

Personalised recommendations