In vitro studies on the cytotoxic potential of surface sealants

  • S. Zingler
  • B. Matthei
  • A. Kohl
  • D. Saure
  • B. Ludwig
  • K. Diercke
  • C.J. Lux
  • R. Erber
Original article

Abstract

Objective

The objective of this in vitro study was an initial screening of the cytotoxic potential of widely used smooth enamel surface sealants.

Materials and methods

A total of 20 products were allocated to four groups based on their chemical composition: (1) filled resin-based sealants, (2) unfilled resin-based sealants, (3) a resin-modified, glass ionomer-based sealant, and (4) silicone-based sealants. All materials were applied to human enamel slices both in accordance with manufacturers’ instructions and in additional experiments applying 50 % undercuring and 50 % overcuring. An agar overlay assay was then used to test the specimens following ISO 10933. The cytotoxic potential of each material was interpreted based on a reaction index that summarized the decolorization and lysis scores obtained.

Results

The cytotoxic potential decreased as follows: unfilled resin-based sealants > filled resin-based sealants > resin-modified, glass ionomer-based sealant > silicone-based sealants. In 75 % of the resin-based products, deliberate undercuring was associated with more extensive decolorization zones, leading to higher rates of cytotoxic potential in two of those products. Overcuring, by contrast, was associated with a tendency for smaller decolorization zones in 50 % of the resin-based products.

Conclusion

Surface sealants derived from resin monomers exhibited cytotoxic potential in the agar overlay assay. There is also evidence of a possible association with curing, as undercuring can increase the cytotoxic potential, whereas normal curing (as per manufacturers’ instructions) or overcuring may help minimize such effects. More research into the biological implications of these materials is needed, especially with regard to their potential impact on the adjacent gingiva.

Keywords

Demineralization Prevention Sealing Cytotoxicity 

Abbreviations

bis-GMA

bisphenol-A diglycidyl dimethacrylate

HEMA

hydroxyethyl methacrylate

HPLC

high performance liquid chromatography

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide

TEGDMA

triethylene glycol dimethacrylate

UDMA

urethane dimethacrylate

In-vitro-Untersuchungen zum zytotoxischen Potenzial von Versiegelungsmaterialien für Glattflächen

Zusammenfassung

Ziel

Ziel dieser In-vitro-Studie war, das zytotoxische Potenzial gängiger Versiegelungsmaterialien für Glattflächen im Sinne eines „initialen Screenings“ zu untersuchen.

Material und Methodik

Insgesamt 20 Produkte wurden nach ihren chemischen Eigenschaften in 4 Gruppen eingeteilt: 1) kompositbasiert, gefüllt; 2) kompositbasiert, ungefüllt, 3) kunststoffmodifiziert glasionomerbasiert und 4) silikonbasiert. Die Materialien wurden gemäß Herstellerangaben sowie mit 50 % verkürzter und verlängerter Polymerisations- bzw. Trocknungszeit auf humane Schmelzscheiben aufgetragen und im Agar-Overlay-Assay in Anlehnung an ISO 10933 getestet. Für die Interpretation wurden Reaktionsindizes auf der Basis von Entfärbungs- und Lyseindizes erstellt.

Ergebnisse

Das zytotoxische Potenzial nahm in der folgenden Reihenfolge der Untersuchungsgruppen ab: kompositbasiert, ungefüllt > kompositbasiert, gefüllt > kunststoffmodifiziert glasionomerbasiert > silikonbasiert. Bei verkürzter Polymerisationszeit zeigten 75 % der kompositbasierten Produkte erhöhte Entfärbungszonen; bei 2 Produkten war dies mit einer erhöhten Einstufung des zytotoxischen Potenzials verbunden. Bei entsprechender Verlängerung der Polymerisationszeit konnte bei 50 % der kompositbasierten Produkte eine tendenzielle Reduzierung der Entfärbungszonen beobachtet werden.

Schlussfolgerungen

Versiegelungsmaterialien für Glattflächen auf Basis von Kunststoffmonomeren weisen im Agar-Overlay-Assay zytotoxisches Potenzial auf. Ferner zeichnet sich ein möglicher Zusammenhang zwischen Polymerisationszeit und zytotoxischem Potenzial ab. Reduzierte Polymerisationszeiten können das zytotoxische Potenzial erhöhen. Umgekehrt kann die Einhaltung bzw. Verlängerung der Polymerisationszeiten helfen, das zytotoxische Potenzial zu reduzieren. Weitere Studien, insbesondere zur möglichen Beeinflussung der benachbarten Gingiva, sind notwendig, um die biologischen Effekte dieser Materialien weiter bewerten zu können.

Schlüsselwörter

Demineralisation Prävention Versiegelung Zytotoxizität 

References

  1. 1.
    Aranha AM, Giro EM, Hebling J et al (2010) Effects of light-curing time on the cytotoxicity of a restorative composite resin on odontoblast-like cells. J Appl Oral Sci 18:461–466PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Van Bebber L, Campbell PM, Honeyman AL et al (2011) Does the amount of filler content in sealants used to prevent decalcification on smooth enamel surfaces really matter? Angle Orthod 81:134–140CrossRefGoogle Scholar
  3. 3.
    Bechtold TE, Sobiegalla A, Markovic M et al (2013) In vivo effectiveness of enamel sealants around orthodontic brackets. J Orofac Orthop 74(6):447–457. doi:10.1007/s00056-013-0178-4PubMedCrossRefGoogle Scholar
  4. 4.
    Benham AW, Campbell PM, Buschang PH (2009) Effectiveness of pit and fissure sealants in reducing white spot lesions during orthodontic treatment. A pilot study. Angle Orthod 79:338–345PubMedCrossRefGoogle Scholar
  5. 5.
    Bruinink A, Luginbuehl R (2012) Evaluation of biocompatibility using in vitro methods: interpretation and limitations. Adv Biochem Eng Biotechnol 126:117–152PubMedGoogle Scholar
  6. 6.
    Buren JL, Staley RN, Wefel J, Qian F (2008) Inhibition of enamel demineralization by an enamel sealant, Pro Seal: an in-vitro study. Am J Orthod Dentofacial Orthop 133:88–94CrossRefGoogle Scholar
  7. 7.
    Caughman WF, Caughman GB, Shiflett RA et al (1991) Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials 12:737–740PubMedCrossRefGoogle Scholar
  8. 8.
    Chapman JA, Roberts WE, Eckert GJ et al (2010) Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 138:188–194PubMedCrossRefGoogle Scholar
  9. 9.
    Souza Costa CA de, Hebling J, Hanks CT (2003) Effects of light-curing time on the cytotoxicity of a restorative resin composite applied to an immortalized odontoblast-cell line. Oper Dent 28:365–370Google Scholar
  10. 10.
    Durner J, Debiak M, Burkle A et al (2010) Induction of DNA strand breaks by dental composite components compared to X-ray exposure in human gingival fibroblasts. Arch Toxicol 85:143–148PubMedCrossRefGoogle Scholar
  11. 11.
    Durner J, Spahl W, Zaspel J et al (2010) Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent Mater 26:91–99PubMedCrossRefGoogle Scholar
  12. 12.
    Erbe C, Alhafne A, Jahn A, Wehrbein H (2013) Glattflächenversiegler in der kieferorthopädischen Praxis – eine Umfrage zu Häufigkeiten, Anwendung und Kontrolle. 86. Wissenschaftliche Jahrestagung der deutschen Gesellschaft für Kieferorthopädie. Abstractband: 91 (P 40)Google Scholar
  13. 13.
    Feng L, Carvalho R, Suh BI (2009) Insufficient cure under the condition of high irradiance and short irradiation time. Dent Mater 25:283–289PubMedCrossRefGoogle Scholar
  14. 14.
    Ferracane JL (1994) Elution of leachable components from composites. J Oral Rehabil 21:441–452PubMedCrossRefGoogle Scholar
  15. 15.
    Ferracane JL, Mitchem JC, Condon JR, Todd R (1997) Wear and marginal breakdown of composites with various degrees of cure. J Dent Res 76:1508–1516PubMedCrossRefGoogle Scholar
  16. 16.
    Ferracane JL (2010) Resin composite-state of the art. Dent Mater 27:29–38PubMedCrossRefGoogle Scholar
  17. 17.
    Finer Y, Santerre JP (2007) Influence of silanated filler content on the biodegradation of bisGMA/TEGDMA dental composite resins. J Biomed Mater Res A 81:75–84PubMedCrossRefGoogle Scholar
  18. 18.
    Geurtsen W, Lehmann F, Spahl W, Leyhausen G (1998) Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. J Biomed Mater Res 41:474–480PubMedCrossRefGoogle Scholar
  19. 19.
    Geurtsen W, Spahl W, Leyhausen G (1999) Variability of cytotoxicity and leaching of substances from four light-curing pit and fissure sealants. J Biomed Mater Res 44:73–77PubMedCrossRefGoogle Scholar
  20. 20.
    Geurtsen W (2000) Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 11:333–355PubMedCrossRefGoogle Scholar
  21. 21.
    Heinig N, Hartmann A (2008) Efficacy of a sealant: study on the efficacy of a sealant (Light Bond) in preventing decalcification during multibracket therapy. J Orofac Orthop 69:154–167PubMedCrossRefGoogle Scholar
  22. 22.
    Hu W, Featherstone JD (2005) Prevention of enamel demineralization: an in-vitro study using light-cured filled sealant. Am J Orthod Dentofacial Orthop 128:592–600PubMedCrossRefGoogle Scholar
  23. 23.
    Julien KC, Buschang PH, Campbell PM (2013) Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod 83:641–647PubMedCrossRefGoogle Scholar
  24. 24.
    Korbmacher-Steiner HM, Schilling AF, Huck LG et al (2012) Laboratory evaluation of toothbrush/toothpaste abrasion resistance after smooth enamel surface sealing. Clin Oral Investig 17:765–774PubMedCrossRefGoogle Scholar
  25. 25.
    Leizer C, Weinstein M, Borislow AJ, Braitman LE (2010) Efficacy of a filled-resin sealant in preventing decalcification during orthodontic treatment. Am J Orthod Dentofacial Orthop 137:796–800PubMedCrossRefGoogle Scholar
  26. 26.
    Moharamzadeh K, Brook IM, Van Noort R (2009) Biocompatibility of resin-based dental materials. Materials 2:514–548CrossRefGoogle Scholar
  27. 27.
    Olea N, Pulgar R, Perez P et al (1996) Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 104:298–305PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    O’Reilly MT, De Jesús Viñas J, Hatch JP (2013) Effectiveness of a sealant compared with no sealant in preventing enamel demineralization in patients with fixed orthodontic appliances: a prospective clinical trial. Am J Orthod Dentofacial Orthop 143:837–844CrossRefGoogle Scholar
  29. 29.
    Peutzfeldt A (1997) Resin composites in dentistry: the monomer systems. Eur J Oral Sci 105:97–116PubMedCrossRefGoogle Scholar
  30. 30.
    Rasband WS (1997–2008) ImageJ. U. S. National Institutes of Health. Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/Google Scholar
  31. 31.
    Reichl FX, Durner J, Hickel R et al (2002) Uptake, clearance and metabolism of TEGDMA in guinea pigs. Dent Mater 18:581–589PubMedCrossRefGoogle Scholar
  32. 32.
    Schmalz G (1988) Agar overlay method. Int Endod J 21:59–66PubMedCrossRefGoogle Scholar
  33. 33.
    Schmalz G, Arenholt-Bindslev D (2009) Basic aspects. In: Schmalz G, Arenholt-Bindslev D (eds) Biocompatibility of dental materials. Springer, Berlin Heiedelberg New York Tokyo, pp 1–12Google Scholar
  34. 34.
    Schmidlin PR, Sener B, Attin T, Wiegand A (2012) Protection of sound enamel and artificial enamel lesions against demineralisation: caries infiltrant versus adhesive. J Dent 40:851–856PubMedCrossRefGoogle Scholar
  35. 35.
    Schweikl H, Schmalz G (1999) Triethylene glycol dimethacrylate induces large deletions in the hprt gene of V79 cells. Mutat Res 438:71–78PubMedCrossRefGoogle Scholar
  36. 36.
    Shellis RP (1978) A synthetic saliva for cultural studies of dental plaque. Arch Oral Biol 23:485–489PubMedCrossRefGoogle Scholar
  37. 37.
    Sideridou I, Tserki V, Papanastasiou G (2002) Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 23:1819–1829PubMedCrossRefGoogle Scholar
  38. 38.
    Spahl W, Budzikiewicz H, Geurtsen W (1998) Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J Dent 26:137–145PubMedCrossRefGoogle Scholar
  39. 39.
    Van Landuyt KL, Nawrot T, Geebelen B et al (2011) How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 27:723–747CrossRefGoogle Scholar
  40. 40.
    Wataha JC, Lockwood PE, Bouillaguet S, Noda M (2003) In vitro biological response to core and flowable dental restorative materials. Dent Mater 19:25–31PubMedCrossRefGoogle Scholar
  41. 41.
    Wegehaupt FJ, Taubock TT, Sener B, Attin T (2012) Long-term protective effect of surface sealants against erosive wear by intrinsic and extrinsic acids. J Dent 40:416–422PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. Zingler
    • 1
  • B. Matthei
    • 1
  • A. Kohl
    • 1
  • D. Saure
    • 2
  • B. Ludwig
    • 1
    • 3
  • K. Diercke
    • 1
  • C.J. Lux
    • 1
  • R. Erber
    • 1
  1. 1.Department of OrthodonticsUniversity of HeidelbergHeidelbergGermany
  2. 2.Institute of Medical Biometry and InformaticsUniversity of HeidelbergHeidelbergGermany
  3. 3.Private practiceTraben-TrarbachGermany

Personalised recommendations