Buccal cortical bone thickness at miniscrew placement sites in patients with different vertical skeletal patterns

Bukkale Kortikalisstärken an Minischrauben-Insertionsstellen bei Patienten mit unterschiedlichem vertikalem Schädelaufbau

  • 621 Accesses

  • 9 Citations



Cortical bone thickness plays an important role in the primary stability of miniscrews. The purpose of this study was to evaluate the buccal cortical bone thickness in adolescent subjects with different vertical skeletal patterns using cone-beam computed tomography (CBCT).

Materials and methods

We examined the CBCT images of 75 patients (30 males, 45 females; mean age 16.5 years; range 15.3–17.7 years) in the present study. High-, average- and low-angle subgroups were generated according to SN-GoMe angle. On volumetric images, we measured the buccal cortical bone thickness from canine to the second molar teeth at heights of 5, 7 and 9 mm from cemento-enamel junction (CEJ). For statistical evaluation, the Wilcoxon signed rank, Kruskal–Wallis and Tukey HSD tests were applied at the p < 0.05 level.


Buccal cortical bone was thickest in the low-angle group. We observed statistically significant differences in the maxilla between the high- and low-angle groups at all levels. In the mandible, we noted statistically significant differences between high-angle and low-angle groups in the canine–first premolar regions at heights of 5 and 7 mm, and in the second premolar–first molar region at 7 mm height from CEJ. Significant differences were also present between the first and second premolars at heights of 7 and 9 mm. Average cortical bone thickness ranged from 1.10–1.37 mm in the maxilla and 1.20–3.28 mm in the mandible for all groups.


Buccal cortical bone thickness in adolescents varied in different vertical skeletal patterns and was greater in the mandible than in the maxilla, with the distance increasing from the CEJ to the apex. As the buccal cortical bone is thinner in high-angle patients, patient-specific measures should be taken when performing miniscrew treatment.



Ein wesentlicher Faktor für die Primärstabilität von Minischrauben ist die Stärke der Kortikalis. Gegenstand dieser Studie waren die bukkalen Kortikalisstärken bei Heranwachsenden mit unterschiedlichem vertikalem Schädelaufbau.

Material und Methoden

Ausgewertet wurde Bildmaterial von prätherapeutischen DVT(digitale Volumentomographie)-Untersuchungen an 75 jungen Frauen (n = 45) und Männern (n = 30) im mittleren Alter von 16,5 (15,3–17,7) Jahren, die in 3 Gruppen − starker, neutraler oder schwacher Kieferbasiswinkel (SN/GoMe) − eingeteilt wurden. Auf entsprechenden 3-D-Visualisierungen wurden jeweils in beiden Kiefern auf unterschiedlichen Höhen apikal der Schmelzzementgrenze (5, 7 und 9 mm) beidseitig vom Eckzahn bis zum zweiten Molaren die bukkalen Kortikalisstärken vermessen. Die Auswertung erfolgte per Wilcoxon-Vorzeichen-, Kruskal-Wallis- und Tukey-HSD-Test (Signifikanzniveau: p ≤ 0,05).


Die ausgeprägtesten Kortikalisstärken fanden sich in der winkelschwachen Gruppe. Im Oberkiefer bestanden zwischen der winkelstarken und – schwachen Gruppe auf allen Messhöhen durchwegs signifikante Unterschiede. Eine Ausnahme bildeten lediglich die Messungen auf 9 mm Höhe im Areal 4–5 (zwischen erstem und zweitem Prämolaren) und 6–7 (zwischen dem erstem und zweiten Molaren). Im Unterkiefer wurden signifikante Unterschiede zwischen der winkelstarken und –schwachen Gruppe im Areal 3–4 (zwischen Eckzahn und erstem Prämolaren) auf 5 und 7 mm Höhe sowie im Areal 5–6 (zwischen zweitem Prämolaren und erstem Molaren) auf 7 mm Höhe ermittelt. Die durchschnittliche Kortikalisstärke betrug für alle Gruppen im Oberkiefer 1,10–1,37 mm und im Unterkiefer 1,20–3,28 mm.


Die Heranwachsenden zeigten je nach vertikalem Schädelaufbau unterschiedliche bukkale Kortikalisstärken. Zudem waren diese Stärken im Unterkiefer ausgeprägter als im Oberkiefer und nahmen von der Schmelzzementgrenze nach apikal zu. Angesichts der schwächeren Kortikalisstärken bei Patienten mit großem Basiswinkel sollte bei Behandlungen mit Minischrauben patientenspezifisch vorgegangen werden.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2


  1. 1.

    Ansari T, Mascarenhas R, Husain A (2011) The relationship of various arch forms and cortical bone thickness. J Dent (Tehran, Iran) 8:7–11

  2. 2.

    Ballrick JW, Palomo JM, Ruch E et al (2008) Image distortion and spatial resolution of a commercially available cone-beam computed tomography machine. Am J Orthod Dentofacial Orthop 134:573–582

  3. 3.

    Baumgaertel S, Hans MG (2009) Buccal cortical bone thickness for mini-implant placement. Am J Orthod Dentofacial Orthop 136:230–235

  4. 4.

    Buschang P, Throckmorton G (1997) Influence of jaw muscle strength on malocclusion. In: Sachdeva RCL (ed) Orthodontics for the next millennium. Ormco, Glendora

  5. 5.

    Cavalcanti MG, Yang J, Ruprecht A et al (1999) Accurate linear measurements in the anterior maxilla using orthoradially reformatted spiral computed tomography. Dentomaxillofac Radiol 28:137–140

  6. 6.

    Chen YJ, Chang HH, Huang CY et al (2007) A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin Oral Implants Res 18:768–775

  7. 7.

    Costa A, Raffaini M, Melsen B (1998) Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg 13:201–209

  8. 8.

    Daegling DJ, Hylander WL (2000) Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form. Am J Phys Anthropol 112:541–551

  9. 9.

    Deguchi T, Nasu M, Murakami K et al (2006) Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop 129:721.e7–e12

  10. 10.

    Farnsworth D, Rossouw PE, Ceen RF et al (2011) Cortical bone thickness at common miniscrew implant sites. Am J Orthod Dentofacial Orthop 139:495–503

  11. 11.

    Garcia-Morales P, Buschang PH, Throckmorton GS et al (2003) Maximum bite force, muscle efficiency and mechanical advantage in children with vertical growth patterns. Eur J Orthod 25:265–272

  12. 12.

    Horner KA, Behrents RG, Kim KB et al (2012) Cortical bone and ridge thickness of hyperdivergent and hypodivergent adults. Am J Orthod Dentofacial Orthop 142:170–178

  13. 13.

    Kageyama T, Dominguez-Rodriguez GC, Vigorito JW et al (2006) A morphological study of relationship between arch dimensions and craniofacial structures in adolescents with class II Division 1 malocclusions and various facial types. Am J Orthod Dentofacial Orthop 129:368–375

  14. 14.

    Kanomi R, Takada K (2000) Application of titanium mini-implant system for orthodontic anchorage. In: Davidovitch Z, Mah J (eds) Biological mechanisms of tooth movement and craniofacial adaptation. Harvard Society for the Advancement of Orthodontics, Boston, pp 253−258

  15. 15.

    Kim HJ, Yun HS, Park HD et al (2006) Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dentofacial Orthop 130:177–182

  16. 16.

    Kim SH, Yoon HG, Choi YS et al (2009) Evaluation of interdental space of the maxillary posterior area for orthodontic mini-implants with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 135:635–641

  17. 17.

    Kuroda S, Sugawara Y, Deguchi T et al (2007) Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop 131:9–15

  18. 18.

    Lee KJ, Joo E, Kim KD et al (2009) Computed tomographic analysis of tooth-bearing alveolar bone for orthodontic miniscrew placement. Am J Orthod Dentofacial Orthop 135:486–494

  19. 19.

    Lim WH, Lee SK, Wikesjö UM et al (2007) A descriptive tissue evaluation at maxillary interradicular sites: implications for orthodontic mini-implant placement. Clin Anat (New York) 20:760–765

  20. 20.

    Masumoto T, Hayashi I, Kawamura A et al (2001) Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible. Eur J Orthod 23:15–23

  21. 21.

    Melsen B, Costa A (2000) Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res 3:23–28

  22. 22.

    Miyawaki S, Koyama I, Inoue M et al (2003) Factors associated with the stability of titanium screw placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 124:373–378

  23. 23.

    Molen AD (2010) Considerations in the use of cone-beam computed tomography for buccal bone measurements. Am J Orthod Dentofacial Orthop 137:130–135

  24. 24.

    Monnerat C, Restle L, Mucha JN (2009) Tomographic mapping of mandibular interradicular spaces for placement of orthodontic mini-implants. Am J Orthod Dentofacial Orthop 135:428.e1–e9

  25. 25.

    Moon CH, Park HK, Nam JS et al (2010) Relationship between vertical skeletal pattern and success rate of orthodontic mini-implants. Am J Orthod Dentofacial Orthop 138:51−57

  26. 26.

    Motoyoshi M, Inaba M, Ono A et al (2009) The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. Int J Oral Maxillofac Surg 38:13–18

  27. 27.

    Motoyoshi M, Matsuoka M, Shimizu N (2007) Application of orthodontic mini-implants in adolescents. Int J Oral Maxillofac Surg 36:695–699

  28. 28.

    Motoyoshi M, Yoshida T, Ono A et al (2007) Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 22:779–784

  29. 29.

    Ono A, Motoyoshi M, Shimizu N (2008) Cortical bone thickness in the buccal posterior region for orthodontic mini-implants. Int J Oral Maxillofac Surg 37:334–340

  30. 30.

    Pancherz H (1980) Temporal and masseter muscle activity in children and adults with normal occlusion. An electromyographic investigation. Acta Odontol Scand 38:343–348

  31. 31.

    Papadopoulos MA, Tarawneh F (2007) The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:e6–e15

  32. 32.

    Park HS, Kwon TG, Sung JH (2004) Nonextraction treatment with microscrew implants. Angle Orthod 74:539–549

  33. 33.

    Park HS, Kyung HM, Sung JH (2002) A simple method of molar uprighting with microimplant anchorage. J Clin Orthod 36:592–596

  34. 34.

    Park J, Cho HJ (2009) Three-dimensional evaluation of interradicular spaces and cortical bone thickness for the placement and initial stability of microimplants in adults. Am J Orthod Dentofacial Orthop 136:314.e1–e12

  35. 35.

    Park YC, Kim JK, Lee JS (2005) Atlas of contemporary orthodontics. Shin Hung International, Seoul, pp 1–104, 145–161

  36. 36.

    Poggio PM, Incorvati C, Velo S et al (2006) “Safe zones”: a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod 76:191–197

  37. 37.

    Razavi T, Palmer RM, Davies J et al (2010) Accuracy of measuring the cortical bone thickness adjacent to dental implants using cone beam computed tomography. Clin Oral Implants Res 21:718–725

  38. 38.

    Reynders R, Ronchi L, Bipat S (2009) Mini-implants in orthodontics: a systematic review of the literature. Am J Orthod Dentofacial Orthop 135:564.e1–e19

  39. 39.

    Sawa Y, Goto K, Suzuki N et al (2001) The new method for the maxillary retraction of the anterior teeth using a titanium microscrew as anchorage. Orthodontic Waves 60:328–331

  40. 40.

    Schwartz-Dabney CL, Dechow PC (2003) Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol 120:252–277

  41. 41.

    Swasty D, Lee J, Huang JC et al (2011) Cross-sectional human mandibular morphology as assessed in vivo by cone-beam computed tomography in patients with different vertical facial dimensions. Am J Orthod Dentofacial Orthop 139:e377–e389

  42. 42.

    Tortopidis D, Lyons MF, Baxendale RH et al (1998) The variability of bite force measurement between sessions, in different positions within the dental arch. J Oral Rehabil 25:681–686

  43. 43.

    Turkyilmaz I, Tozum TF, Tumer C et al (2006) Assessment of correlation between computerized tomography values of the bone, and maximum torque and resonance frequency values at dental implant placement. J Oral Rehabil 33:881–888

  44. 44.

    Wilmes B, Rademacher C, Olthoff G et al (2006) Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop 67:162–174

Download references

Compliance with ethical guidelines

Conflict of interest. I. Veli, T. Uysal, A. Baysal, and I. Karadede state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Einhaltung ethischer Richtlinien

Interessenkonflikt. I, Veli, T. Uysal, A. Baysal und I. Karadede geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Correspondence to Prof. Dr. T. Uysal DDS, PhD.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veli, I., Uysal, T., Baysal, A. et al. Buccal cortical bone thickness at miniscrew placement sites in patients with different vertical skeletal patterns. J Orofac Orthop 75, 417–429 (2014).

Download citation


  • Cortical bone thickness
  • Miniscrew
  • Cone beam computed tomography
  • Vertical dimension


  • Kortikalisstärke
  • Minischraube
  • Digitale Volumentomographie
  • Vertikale Dimension