Advertisement

Two-dimensional lateral cephalometric evaluation of varying types of Class II subgroups on posterior airway space in postadolescent girls: a pilot study

  • U. Oz
  • K. Orhan
  • M. Rubenduz
Original article

Abstract

Aims

The purpose of this study was to compare pharyngeal airway linear measurements of untreated skeletal Class II subjects with low-, neutral- and high-angle facial patterns and a skeletal Class I control group of postadolescent girls.

Methods

We enrolled 50 postadolescent girls in this study. The Class II,1 cohort included subjects presenting ANB angles greater than 4°. Subjects were categorized as belonging to one of three different rotation models: high, neutral and low angles. ANOVA and Duncan’s tests were used to identify differences within and among groups (p<0.05).

Results

Pharyngeal airway measurements were significantly smaller (p<0.05) in the high-angle Class II group. In addition, the narrowest linear measurements of the oropharynx (ph-pph) were also smaller in the high-angle Class II group (p=0.055). Soft palate thickness (sp1-sp2) was significantly greater (p<0.05) in the low-angle Class II group.

Conclusion

That smaller airway measurements in only the high-angle Class II subjects were noted confirms an association between pharyngeal airway measurements and a vertical skeletal pattern. However, we could not ascertain that a sagittal jaw relationship had an effect on airway space.

Keywords

Pharyngeal airway linear measurements Lateral cephalometry Class II malocclusion Vertical dimension 

Zweidimensionale kephalometrische Auswertung der Atemwegsweiten im Rachen von postadoleszenten Mädchen mit diversen Klasse-II-Mustern: eine Pilotstudie

Zusammenfassung

Studienziele

Gegenstand dieser Studie waren die Atemwegsweiten im Rachen unbehandelter postadoleszenter Patientinnen mit skeletaler Klasse-II-Anomalie bei unterschiedlichen fazialen Mustern gegenüber einer Klasse-I-Kontrollgruppe.

Methode

Die Studie umfasste 50 postadoleszente Mädchen, wobei jene in der Klasse-II/1-Kohorte einen ANB-Winkel >4° aufwiesen und je nach Winkel der Unterkieferebene einem schwach, neutral oder stark geneigten Rotationstyp zugeordnet wurden. Per Varianzanalyse und Duncan-Test wurden gruppeninterne und gruppenübergreifende Unterschiede ermittelt (p<0,05).

Resultate

Die neigungsstarke Klasse-II-Untergruppe zeigte signifikant kleinere Rachenweiten als alle anderen Gruppen (p<0,05). Auch die engste Stelle im Oropharynx (ph-pph) war in dieser Gruppe deutlich am schmalsten (p=0,055). Die Stärke des weichen Gaumens (sp1–sp2) lag in der neigungsschwachen Klasse-II-Gruppe signifikant über den Werten in allen anderen Gruppen (p<0,05).

Schlussfolgerung

Unser Befund kleinerer Atemwegsweiten in den neigungsstarken Klasse-II-Fällen gegenüber allen anderen Gruppen bestätigt, dass zwischen Rachenweiten und vertikalen Wachstumsmustern ein Zusammenhang besteht. Einen Einfluss der sagittalen Kieferrelation auf die Atemwegsweiten verzeichneten wir nicht.

Schlüsselwörter

Streckenvermessung des Atemwegs im Pharynx Fernröntgenseitenanalyse Klasse-II-Malokklusion Vertikale Dimension 

Notes

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

References

  1. 1.
    Aboudara C, Nielsen I, Huang JC et al (2009) Comparison of airway space with conventional lateral headfilms and 3-dimensional reconstruction from cone-beam computed tomography. Am J Orthod Dentofacial Orthop 135:468–479CrossRefPubMedGoogle Scholar
  2. 2.
    Aboudara CA, Hatcher D, Nielsen IL, Miller A (2003) A three-dimensional evaluation of the upper airway in adolescents. Orthod Craniofac Res 6:173–175CrossRefPubMedGoogle Scholar
  3. 3.
    Abramson Z, Susarla S, August M et al (2010) Three-dimensional computed tomographic analysis of airway anatomy in patients with obstructive sleep apnea. J Oral Maxillofac Surg 68:354–362CrossRefPubMedGoogle Scholar
  4. 4.
    Abramson Z, Susarla S, Troulis M, Kaban L (2009) Age-related changes of the upper airway assessed by 3-dimensional computed tomography. J Craniofac Surg 20:657–663CrossRefPubMedGoogle Scholar
  5. 5.
    Akcam MO, Toygar TU, Wada T (2002) Longitudinal investigation of soft palate and nasopharyngeal airway relations in different rotation types. Angle Orthod 72:521–526PubMedGoogle Scholar
  6. 6.
    Baccetti T, Franchi L, McNamara JA Jr (2005) The cervical vertebral maturation method for the identification of optimal treatment timing. Semin Orthod 11:119–129CrossRefGoogle Scholar
  7. 7.
    Celikoglu M, Akpinar S, Yavuz I (2010) The pattern of malocclusion in a sample of orthodontic patients from Turkey. Med Oral Patol Oral Cir Bucal 15:e791–e796CrossRefPubMedGoogle Scholar
  8. 8.
    Ceylan I, Oktay H (1995) A study on the pharyngeal size in different skeletal patterns. Am J Orthod Dentofacial Orthop 108:69–75CrossRefPubMedGoogle Scholar
  9. 9.
    Daniel MM, Lorenzi MC, Costa Leite C da, Lorenzi-Filho G (2007) Pharyngeal dimensions in healthy men and women. Clinics (Sao Paulo) 62:5–10Google Scholar
  10. 10.
    De Freitas MR, Alcazar NM, Janson G et al (2006) Upper and lower pharyngeal airways in subjects with Class I and Class II malocclusions and different growth patterns. Am J Orthod Dentofacial Orthop 130:742–745CrossRefGoogle Scholar
  11. 11.
    Gábris K, Márton S, Madléna M (2006) Prevalence of malocclusions in Hungarian adolescents. Eur J Orthod 28:467–470CrossRefPubMedGoogle Scholar
  12. 12.
    Jena KA, Singh PS, Utreja AK (2010) Sagittal mandibular development effects on the dimensions of the awake pharyngeal airway passage. Angle Orthod 80:1061–1067CrossRefPubMedGoogle Scholar
  13. 13.
    Johnston CD, Richardson A (1999) Cephalometric changes in adult pharyngeal morphology. Eur J Orthod 21:357–362CrossRefPubMedGoogle Scholar
  14. 14.
    Joseph AA, Elbaum J, Cisneros GJ, Eisig SB (1998) A cephalometric comparative study of the soft tissue airway dimensions in persons with hyperdivergent and normodivergent facial patterns. J Oral Maxillofac Surg 56:135–139CrossRefPubMedGoogle Scholar
  15. 15.
    Kim YJ, Hong JS, Hwang YI, Park YH (2010) Three-dimensional analysis of pharyngeal airway in preadolescent children with different anteroposterior skeletal patterns. Am J Orthod Dentofacial Orthop 137:306, e1–e11CrossRefPubMedGoogle Scholar
  16. 16.
    King EW (1952) A roentgenographic study of pharyngeal growth. Angle Orthod 22:23–37Google Scholar
  17. 17.
    Kirjavainen M, Kirjavainen T (2007) Upper airway dimensions in Class II malocclusion. Effects of headgear treatment. Angle Orthod 77:1046–1053CrossRefPubMedGoogle Scholar
  18. 18.
    Kinzinger G, Czapka K, Ludwig B et al (2011) Effects of fixed appliances in correcting Angle Class II on the depth of the posterior airway space: FMA vs. Herbst appliance—a retrospective cephalometric study. J Orofac Orthop 72:301–320CrossRefPubMedGoogle Scholar
  19. 19.
    Laine T, Warren DW (1991) Effects of age, gender, and body size on nasal cross-sectional area in children. Eur J Orthod 13:311–316CrossRefPubMedGoogle Scholar
  20. 20.
    Lenza MG, Lenza MM, Dalstra M et al (2010) An analysis of different approaches to the assessment of upper airway morphology: a CBCT study. Orthod Craniofac Res 13:96–105PubMedGoogle Scholar
  21. 21.
    Linder-Aronson S (1970) Adenoids. Their effect on mode of breathing and nasal airflow and their relationship to characteristics of the facial skeleton and the denition. A biometric, rhino-manometric and cephalometro-radiographic study on children with and without adenoids. Acta Otolaryngol 69:1–132Google Scholar
  22. 22.
    Lopes PM, Moreira CR, Perrella A et al (2008) 3-D volume rendering maxillofacial analysis of angular measurements by multislice CT. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:224–230CrossRefPubMedGoogle Scholar
  23. 23.
    Ludlow JB, Gubler M, Cevidanes L, Mol A (2009) Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop 136(3):312–313CrossRefPubMedGoogle Scholar
  24. 24.
    Major MP, Flores-Mir C, Major PW (2006) Assessment of lateral cephalometric diagnosis of adenoid hypertrophy and posterior upper airway obstruction: a systematic review. Am J Orthod Dentofacial Orthop 130:700–708CrossRefPubMedGoogle Scholar
  25. 25.
    McNamara JA Jr (1981) Influence of respiratory pattern on craniofacial growth. Angle Orthod 51:269–300PubMedGoogle Scholar
  26. 26.
    Mohsenin V (2003) Effects of gender on upper airway collapsibility and severity of obstructive sleep apnea. Sleep Med 4:523–529CrossRefPubMedGoogle Scholar
  27. 27.
    Oz U, Orhan K, Abe N (2011) Comparison of linear and angular measurements using two dimensional conventional methods and three dimensional cone beam CT images reconstructed from a volumetric rendering program in vivo. Dentomaxillofac Radiol 40:492–500CrossRefPubMedGoogle Scholar
  28. 28.
    Oz U, Rubenduz M (2011) Craniofacial differences between skeletal Class II and Class I malocclusions according to vertical classification. J Stomat Occ Med 4:105−111CrossRefGoogle Scholar
  29. 29.
    Preston BC, Tobias VP, Salem HO (2004) Skeletal age and growth of the nasopharynx in the sagittal plane: a cephalometric study. Semin Orthod 10:16–38CrossRefGoogle Scholar
  30. 30.
    Proffit RW, Fields Jr WH, Ackerman LJ et al (2000) Contemporary Orthodontics, 3rd ed. St. Louis, Missouri 2–22Google Scholar
  31. 31.
    Samman N, Mohammadi H, Xia J (2003) Cephalometric norms for upper airway in healthy Hong Kong Chinese population. Hong Kong Med J 9:25–30PubMedGoogle Scholar
  32. 32.
    Sheng CM, Lin LH, Su Y, Tsai HH (2009) Developmental changes in pharyngeal airway depth and hyoid bone position from childhood to young adulthood. Angle Orthod 79:484–490PubMedGoogle Scholar
  33. 33.
    Solow B, Skov S, Ovesen J et al (1996) Airway dimensions and head posture in obstructive sleep apnoea. Eur J Orthod 18:571–579PubMedGoogle Scholar
  34. 34.
    Standerwick RG (2009) Not all Class II patients alike. Am J Orthod Dentofacial Orthop 135:573–579CrossRefGoogle Scholar
  35. 35.
    Stellzig-Eisenhauer A (2001) The influence of cephalometric parameters on resonance of speech in cleft lip and palate patients. An interdisciplinary study. J Orofac Orthop 62:202–223CrossRefPubMedGoogle Scholar
  36. 36.
    Subtelny JD (1980) Oral respiration: facial maldevelopment and corrective dentofacial orthopedics. Angle Orthod 50:147–164PubMedGoogle Scholar
  37. 37.
    Tangugsorn V, Krogstad O, Espeland L, Lyberg T (2000) Obstructive sleep apnea (OSA): a cephalometric analysis of severe and non-severe OSA patients. Part I: Multiple comparison of cephalometric variables. Int J Adult Orthodon Orthognath Surg 15:139–152PubMedGoogle Scholar
  38. 38.
    Ucar FI, Uysal T (2011) Orofacial airway dimensions in subjects with Class I malocclusion and different growth patterns. Angle Orthod 81:460–468CrossRefPubMedGoogle Scholar
  39. 39.
    Vlijmen OJ van, Maal T, Bergé SJ et al (2010) A comparison between 2D and 3D cephalometry on CBCT scans of human skulls. Int J Oral Maxillofac Surg 39:156–160CrossRefPubMedGoogle Scholar
  40. 40.
    Vizzotto MB, Liedke GS, Delamare EL et al (2012) A comparative study of lateral cephalograms and cone-beam computed tomographic images in upper airway assessment. Eur J Orthod 34:390–393CrossRefPubMedGoogle Scholar
  41. 41.
    Watanabe T, Isono S, Tanaka A et al (2002) Contribution of body habitus and craniofacial characteristics to segmental closing pressures of passive pharynx in patients with sleep disordered breathing. Am J Respir Crit Care Med 165:260–265PubMedGoogle Scholar
  42. 42.
    Ye L, Pien GW, Ratcliffe SJ, Weaver TE (2009) Gender differences in obstructive sleep apnea and treatment response to continuous positive airway pressure. J Clin Sleep Med 5:512–518PubMedGoogle Scholar
  43. 43.
    Zhong Z, Tang Z, Gao X, Zeng XL (2010) A comparison study of upper airway among different skeletal craniofacial patterns in nonsnoring Chinese children. Angle Orthod 80:267–274CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Orthodontics, School of DentistryNear East UniversityLefkosaNorthern Cyprus, Turkey
  2. 2.Division of Orthodontics, College of DentistryUniversity of KentuckyLexingtonUSA
  3. 3.Department of DentoMaxillofacial Radiology, School of DentistryAnkara UniversityAnkaraTurkey
  4. 4.Department of DentoMaxillofacial Radiology, School of DentistryNear East UniversityLefkosaNorthern Cyprus, Turke
  5. 5.Department of OrthodonticsAnkara UniversityAnkaraTurkey

Personalised recommendations