coloproctology

, Volume 34, Issue 6, pp 401–409

Colitis ulcerosa

Immunfunktion, Gewebefibrose und aktuelle Therapieansätze
Standorte
  • 242 Downloads

Zusammenfassung

Hintergrund

Die Colitis ulcerosa (CU) ist eine komplexe Erkrankung, bei der die Interaktion von genetischen, umweltbedingten und mikrobiellen Faktoren ein Fortschreiten der chronischen Darmentzündung bedingt, die schließlich zu einer ausgeprägten Gewebefibrosierung führt.

Diskussion

Die vorliegende Übersichtsarbeit beschreibt den aktuellen Stand der Fachliteratur zur CU bezüglich einer genetischen Prädisposition und der pathophysiologischen Rolle involvierter Zytokine (z. B. IL-13, IL-23, TGF-β1), insbesondere hinsichtlich des IL-12/IL-23-Weges im Krankheitsprozess. Auch auf den beteiligten Immunzellen (z. B. T-Zellen, Epithelzellen, Fibroblasten) liegt ein besonderer Fokus. Zudem gibt sie einen Überblick über die aktuellen Therapieansätze bei dieser Erkrankung. Diese Therapie-Ansätze zielen selektiv auf eine Blockade der Aktivierung der beteiligten Zelltypen, auf eine Inhibierung der Migration von Immunzellen zum Ort der Entzündung sowie auf Anti-Zytokin-Strategien. Diese könnten – bei rechtzeitigem Einsatz – die Aufrechterhaltung der Entzündungsmechanismen verhindern und so eine Fibrose vermeiden. Tiermodelle, welche wesentliche Befunde zum Verständnis chronisch-entzündlicher Darmerkrankungen beim Menschen geliefert haben, werden in ihrem diesbezüglichen Kontext kurz diskutiert.

Schlüsselwörter

Colitis ulcerosa Genetische Prädisposition T-Zellen-Untergruppen Zytokine Medikamentöse Behandlung Therapiestudien 

Ulcerative colitis

Immune function, tissue fibrosis and current therapeutic considerations

Abstract

Background

Ulcerative colitis (UC) is a complex disease in which the interaction of genetic, environmental and microbial factors drives chronic intestinal inflammation that finally leads to extensive tissue fibrosis.

Discussion

The present review discusses the current knowledge on genetic susceptibility, especially of the IL-12/IL-23 pathway, the pathophysiologic role of the involved cytokines (e.g. IL-13, IL-23, TGF-β1) and immune cells (e.g. T cells, epithelial cells, fibroblasts) in UC followed by an overview on actual therapeutic considerations. These future therapies will target selectively the involved cell types by blocking their activation and its downstream signalling, by inhibiting their migration to the inflamed site and by anti-cytokine strategies. This may avoid–when initiated in time–the perpetuation of the inflammatory mechanisms thus preventing fibrosis. With respect to animal models that have guided the most productive efforts for understanding human inflammatory bowel disease, these will be shortly discussed in the respective context.

Keywords

Ulcerative colitis Genetic susceptibility T cell subsets Cytokines Drug therapy Investigational therapies 

Literatur

  1. 1.
    Loftus EV Jr (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126:1504–1517PubMedCrossRefGoogle Scholar
  2. 2.
    Maul J, Duchmann R (2008) Can loss of immune tolerance cause IBD? Inflamm Bowel Dis 14:115–116CrossRefGoogle Scholar
  3. 3.
    Ardizzone S, Puttini PS, Cassinotti A, Porro GB (2008) Extraintestinal manifestations of inflammatory bowel disease. Dig Liver Dis 40:253–259CrossRefGoogle Scholar
  4. 4.
    Duchmann R, Maul J, Heller F, Zeitz M (2003) Basic mechanisms of inflammation in ulcerative colitis. Dig Surg 20:347–349Google Scholar
  5. 5.
    Fichtner-Feigl S, Strober W, Geissler EK, Schlitt H (2008) Cytokines mediating the induction of chronic colitis and colitisassociated fibrosis. Mucosal Immunol 1:24–27CrossRefGoogle Scholar
  6. 6.
    Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8:458–466PubMedCrossRefGoogle Scholar
  7. 7.
    Strober W, Fuss IJ, Blumberg RS (2002) The immunology of mucosal models of inflammation. Annu Rev Immunol 20:495–549PubMedCrossRefGoogle Scholar
  8. 8.
    Caprilli R, Lapaquette P, Darfeuille-Michaud A (2010) Eating the enemy in Crohn’s disease: an old theory revisited. J Crohns Colitis 4:377–383PubMedCrossRefGoogle Scholar
  9. 9.
    Cargill M, Schrodi SJ, Chang M et al (2007) A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80:273–290PubMedCrossRefGoogle Scholar
  10. 10.
    Burtton P, Clayton D, Cardon L (2007) Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 39:1329–1337CrossRefGoogle Scholar
  11. 11.
    Yu W, Lin Z, Pastor DM et al (2010) Genes regulated by Nkx2–3 in sporadic and inflammatory bowel disease-associated colorectal cancer cell lines. Dig Dis Sci 55:3171–3180PubMedCrossRefGoogle Scholar
  12. 12.
    Goyette P, Lefebvre C, Ng A et al (2008) Genecentric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunol 1:131–138PubMedCrossRefGoogle Scholar
  13. 13.
    Long SA, Cerosaletti K, Wan JY et al (2011) An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4+ T cells. Genes Immun 12:116–125PubMedCrossRefGoogle Scholar
  14. 14.
    Bekker-Jensen S, Danielsen JR et al (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol 12:80–86PubMedCrossRefGoogle Scholar
  15. 15.
    Chan I, Liu L, Hamada T, Sethuraman G, McGrath JA (2007) The molecular basis of lipoid proteinosis: mutations in extracellular matrix protein 1. Exp Dermatol 16:881–890PubMedCrossRefGoogle Scholar
  16. 16.
    Matsuda A, Suzuki Y, Honda G et al (2003) Large-scale identification and characterization of human genes that activate NF-[kappa]B and MAPK signaling pathways. Oncogene 22:3307–3318PubMedCrossRefGoogle Scholar
  17. 17.
    Franke A, Balschun T, Karlsen TH et al (2008) Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 40:713–715PubMedCrossRefGoogle Scholar
  18. 18.
    Fisher SA, Tremelling M, Anderson CA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 40:710–712PubMedCrossRefGoogle Scholar
  19. 19.
    Brand S (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58:1152–1167PubMedCrossRefGoogle Scholar
  20. 20.
    Deusch K, Mauthe B, Reiter C et al (1993) CD4-antibody treatment of inflammatory bowel disease: one year follow-up. Gastroenterology 104:A691Google Scholar
  21. 21.
    Emmrich J, Seyfarth M, Fleig WE, Emmrich F (1991) Treatment of inflammatory bowel disease with anti-CD4 monoclonal antibody. Lancet 338:570–571PubMedCrossRefGoogle Scholar
  22. 22.
    Kozuch PL, Hanauer SB (2006) General principles and pharmacology of biologics in inflammatory bowel disease. Gastroenterol Clin North Am 35:757–773PubMedCrossRefGoogle Scholar
  23. 23.
    Plevy S, Salzberg B, Van Assche G et al (2007) A phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroidrefractory ulcerative colitis. Gastroenterology 133:1414–1422PubMedCrossRefGoogle Scholar
  24. 24.
    Baumgart DC, Targan SR, Dignass AU et al (2010) Prospective randomized open-label multicenter phase I/II dose escalation trial of visilizumab (HuM291) in severe steroid-refractory ulcerative colitis. Inflamm Bowel Dis 16:620–629PubMedGoogle Scholar
  25. 25.
    Sandborn W, Colombel J, Frankel MB et al (2009) A placebo-controlled trial of visilizumab in patients with intravenous (IV) steroid refractory ulcerative colitis (UC). Gastroenterology 136:A64Google Scholar
  26. 26.
    Sandborn WJ, Hanauer SB, Katz S et al (2001) Etanercept for active Crohn’s disease: a randomized, doubleblind, placebo-controlled trial. Gastroenterology 121:1088–1094PubMedCrossRefGoogle Scholar
  27. 27.
    Rutgeerts P, Lemmens L, Van Assche G et al (2003) Treatment of active Crohn’s disease with onercept (recombinant human soluble p55 tumour necrosis factor receptor): results of a randomized, open-label, pilot study. Aliment Pharmacol Ther 17:185–192PubMedCrossRefGoogle Scholar
  28. 28.
    Travis S, Yap LM, Hawkey C et al (2005) RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis 11:713–719PubMedCrossRefGoogle Scholar
  29. 29.
    Lofberg R, Neurath M, Ost A, Pettersson S (2002) Topical NFkB antisense oligonucleotides in patients with active distal colonic IBD. A randomised controlled pilot trial. Gastroenterology 122:A60CrossRefGoogle Scholar
  30. 30.
    Danese S, Angelucci E, Malesci A, Caprilli R (2008) Biological agents for ulcerative colitis: hypes and hopes. Med Res Rev 28:201–218PubMedCrossRefGoogle Scholar
  31. 31.
    Van Assche G, Sandborn WJ, Feagan BG et al (2006) Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut 55:1568–1574CrossRefGoogle Scholar
  32. 32.
    Creed TJ, Probert CSJ, Norman MN et al (2006) Basiliximab for the treatment of steroid-resistant ulcerative colitis: further experience in moderate and severe disease. Aliment Pharmacol Ther 23:1435–1442PubMedCrossRefGoogle Scholar
  33. 33.
    Ghosh S, Goldin E, Gordon FH et al (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348:24–32PubMedCrossRefGoogle Scholar
  34. 34.
    Gordon FH, Hamilton MI, Donoghue S et al (2002) A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin. Aliment Pharmacol Ther 16:699–705PubMedCrossRefGoogle Scholar
  35. 35.
    Feagan BG, Greenberg GR, Wild G et al (2005) Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med 352:2499–2507PubMedCrossRefGoogle Scholar
  36. 36.
    Van Deventer SJH, Wedel MK, Baker BF et al (2006) A phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis. Aliment Pharmacol Ther 23:1415–1425CrossRefGoogle Scholar
  37. 37.
    Suzuki K, Kawauchi Y, Palaniyandi SS et al (2007) Blockade of interferon-gamma-inducible protein-10 attenuates chronic experimental colitis by blocking cellular trafficking and protecting intestinal epithelial cells. Pathol Int 57:413–420PubMedCrossRefGoogle Scholar
  38. 38.
    Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336PubMedCrossRefGoogle Scholar
  39. 39.
    Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890PubMedCrossRefGoogle Scholar
  40. 40.
    Fuss IJ, Heller F, Boirivant M et al (2004) Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 113:1490–1497PubMedGoogle Scholar
  41. 41.
    Dieren JM van, Woude CJ van der, Kuipers EJ et al (2007) Roles of CD1d-restricted NKT cells in the intestine. Inflamm Bowel Dis 13:1146–1152PubMedCrossRefGoogle Scholar
  42. 42.
    Omata F, Birkenbach M, Matsuzaki S et al (2001) The expression of IL-12 p40 and its homologue, Epstein-Barr virus-induced gene 3, in inflammatory bowel disease. Inflamm Bowel Dis 7:215–220PubMedCrossRefGoogle Scholar
  43. 43.
    Heller F, Fuss IJ, Nieuwenhuis EE et al (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–638PubMedCrossRefGoogle Scholar
  44. 44.
    Gauvreau GM, Boulet L, Cockcroft DW et al (2011) The effects of IL-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med (in press)Google Scholar
  45. 45.
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA (2001) CD4+ CD25 high regulatory cells in human peripheral blood. J Immunol 167:1245–1253PubMedGoogle Scholar
  46. 46.
    Dieckmann D, Plottner H, Berchtold S et al (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193:1303–1310PubMedCrossRefGoogle Scholar
  47. 47.
    Jonuleit H, Schmitt E, Stassen M et al (2001) Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 193:1285–1294PubMedCrossRefGoogle Scholar
  48. 48.
    Maul J, Loddenkemper C, Mundt P et al (2005) Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 128:1868–1878PubMedCrossRefGoogle Scholar
  49. 49.
    Epple H, Loddenkemper C, Kunkel D et al (2006) Mucosal but not peripheral FOXP3+ regulatory T cells are highly increased in untreated HIV infection and normalize after suppressive HAART. Blood 108:3072–3078PubMedCrossRefGoogle Scholar
  50. 50.
    Yu QT, Saruta M, Avanesyan A et al (2007) Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis 13:191–199PubMedCrossRefGoogle Scholar
  51. 51.
    Makita S, Kanai T, Oshima S et al (2004) CD4+ CD25bright T cells in human intestinal lamina propria as regulatory cells. J Immunol 173:3119–3130PubMedGoogle Scholar
  52. 52.
    Rieger K, Loddenkemper C, Maul J et al (2006) Mucosal FOXP3+ regulatory T cells are numerically deficient in acute and chronic GvHD. Blood 107:1717–1723PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang X, Izikson L, Liu L, Weiner HL (2001) Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol 167:4245–4253PubMedGoogle Scholar
  54. 54.
    Gad M, Brimnes J, Claesson MH (2003) CD4+ T regulatory cells from the colonic lamina propria of normal mice inhibit proliferation of enterobacteria-reactive, disease-inducing Th1-cells from scid mice with colitis. Clin Exp Immunol 131:34–40PubMedCrossRefGoogle Scholar
  55. 55.
    Read S, Malmström V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302PubMedCrossRefGoogle Scholar
  56. 56.
    Mottet C, Uhlig HH, Powrie F (2003) Cutting edge: cure of colitis by CD4+ CD25+ regulatory T cells. J Immunol 170:3939–3943PubMedGoogle Scholar
  57. 57.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061PubMedCrossRefGoogle Scholar
  58. 58.
    Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257PubMedCrossRefGoogle Scholar
  59. 59.
    Hori S (2010) Developmental plasticity of Foxp3+ regulatory T cells. Curr Opin Immunol 22:575–582PubMedCrossRefGoogle Scholar
  60. 60.
    Saruta M, Yu QT, Fleshner PR et al (2007) Characterization of FOXP3+ CD4+ regulatory T cells in Crohn’s disease. Clin Immunol 125:281–290PubMedCrossRefGoogle Scholar
  61. 61.
    Takahashi M, Nakamura K, Honda K et al (2006) An inverse correlation of human peripheral blood regulatory T cell frequency with the disease activity of ulcerative colitis. Dig Dis Sci 51:677–686PubMedCrossRefGoogle Scholar
  62. 62.
    Holmén N, Lundgren A, Lundin S et al (2006) Functional CD4+ CD25high regulatory T cells are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with disease activity. Inflamm Bowel Dis 12:447–456PubMedCrossRefGoogle Scholar
  63. 63.
    Sumida Y, Nakamura K, Kanayama K et al (2008) Preparation of functionally preserved CD4+ CD25high regulatory T cells from leukapheresis products from ulcerative colitis patients, applicable to regulatory T-cell transfer therapy. Cytotherapy 10:698–710PubMedCrossRefGoogle Scholar
  64. 64.
    Buruiana FE, Solà I, Alonso-Coello P (2010) Recombinant human interleukin 10 for induction of remission in Crohn’s disease. In: Alonso-Coello P (Hrsg) Cochrane database of systematic reviews, the cochrane collaboration. Wiley, ChichesterGoogle Scholar
  65. 65.
    Schreiber S, Fedorak RN, Wild G et al (1998) Ulcerative Colitis IL-10 Cooperative Study Group. Safety and tolerance of rHuIL-10 treatment in patients with mild/moderate active ulcerative colitis. Gastroenterology 114:A1080–A1081Google Scholar
  66. 66.
    Steidler L, Rottiers P, Coulie B (2009) Actobiotics™ as a novel method for cytokine delivery. Ann N Y Acad Sci 1182:135–145PubMedCrossRefGoogle Scholar
  67. 67.
    Gregori S, Roncarolo MG, Bacchetta R (2011) Methods for in vitro generation of human type 1 regulatory T cells. Methods Mol Biol 677:31–46PubMedCrossRefGoogle Scholar
  68. 68.
    Desreumaux P, Beaugerie L, Bouhnik Y et al (2010) Crohn’s disease and autologous type 1 regulatory T (Tr1) lmyphocytes (CATS1) cellular therapy open label phase I study. Gut 59:A73Google Scholar
  69. 69.
    Iwakura Y, Ishigame H (2006) The IL-23/IL-17 axis in inflammation. J Clin Invest 116:1218–1222PubMedCrossRefGoogle Scholar
  70. 70.
    Wiekowski MT, Leach MW, Evans EW et al (2001) Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol 166:7563–7570PubMedGoogle Scholar
  71. 71.
    Becker C, Dornhoff H, Neufert C et al (2006) Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J Immunol 177:2760–2764PubMedGoogle Scholar
  72. 72.
    Pickert G, Neufert C, Leppkes M et al (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465–1472PubMedCrossRefGoogle Scholar
  73. 73.
    Sandborn WJ, Feagan BG, Fedorak RN et al (2008) A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology 135:1130–1141PubMedCrossRefGoogle Scholar
  74. 74.
    West K (2009) CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr Opin Investig Drugs 10:491–504PubMedGoogle Scholar
  75. 75.
    Debril M, Renaud J, Fajas L, Auwerx J (2001) The pleiotropic functions of peroxisome proliferator-activated receptor gamma. J Mol Med 79:30–47PubMedCrossRefGoogle Scholar
  76. 76.
    Kliewer SA, Umesono K, Noonan DJ et al (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774PubMedCrossRefGoogle Scholar
  77. 77.
    Jackson SM, Parhami F, Xi X et al (1999) Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyteendothelial cell interaction. Arterioscler Thromb Vasc Biol 19:2094–2104PubMedCrossRefGoogle Scholar
  78. 78.
    Yang XY, Wang LH, Chen T et al (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor γ (PPARγ) agonists. J Biol Chem 275:4541–4544PubMedCrossRefGoogle Scholar
  79. 79.
    Dubuquoy L, Rousseaux C, Thuru X et al (2006) PPARγ as a new therapeutic target in inflammatory bowel diseases. Gut 55:1341–1349PubMedCrossRefGoogle Scholar
  80. 80.
    Lefebvre M, Paulweber B, Fajas L et al (1999) Peroxisome proliferator-activated receptor gamma is induced during differentiation of colon epithelium cells. J Endocrinol 162:331–340PubMedCrossRefGoogle Scholar
  81. 81.
    Dubuquoy L, Jansson EÅ, Deeb S et al (2003) Impaired expression of peroxisome proliferator-activated receptor [gamma] in ulcerative colitis. Gastroenterology 124:1265–1276PubMedCrossRefGoogle Scholar
  82. 82.
    Saubermann LJ, Nakajima A, Wada K et al (2002) Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis. Inflamm Bowel Dis 8:330–339PubMedCrossRefGoogle Scholar
  83. 83.
    Su CG, Wen X, Bailey ST et al (1999) A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response. J Clin Invest 104:383–389PubMedCrossRefGoogle Scholar
  84. 84.
    Takagi T, Naito Y, Tomatsuri N et al (2002) Pioglitazone, a PPAR-gamma ligand provides protection from dextran sulfate sodium-induced colitis in mice in association with inhibition of the NF-kappaB-cytokine cascade. Redox Rep 7:283–289PubMedCrossRefGoogle Scholar
  85. 85.
    Lewis JD, Lichtenstein GR, Deren JJ et al (2008) Rosiglitazone for active ulcerative colitis. Gastroenterology 134:688–695PubMedCrossRefGoogle Scholar
  86. 86.
    Nissen SE, Wolski K (2010) Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med 170:1191–1201PubMedCrossRefGoogle Scholar
  87. 87.
    Graham DJ, Ouellet-Hellstrom R, MaCurdy TE et al (2010) Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 304:411–418PubMedCrossRefGoogle Scholar
  88. 88.
    Rousseaux C, Lefebvre B, Dubuquoy L et al (2005) Intestinal antiinflammatory effect of 5- aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ. J Exp Med 201:1205–1215PubMedCrossRefGoogle Scholar
  89. 89.
    Seibold F, Brandwein S, Simpson S et al (1998) pANCA represents a cross-reactivity to enteric bacterial antigens. J Clin Immunol 18:153–160PubMedCrossRefGoogle Scholar
  90. 90.
    Shih DQ, Targan SR (2008) Immunopathogenesis of inflammatory bowel disease. World J Gastroenterol 14:390–400PubMedCrossRefGoogle Scholar
  91. 91.
    Targan SR, Karp LC (2005) Defects in mucosal immunity leading to ulcerative colitis. Immunol Rev 206:296–305PubMedCrossRefGoogle Scholar
  92. 92.
    Mizoguchi E, Mizoguchi A, Chiba C et al (1997) Antineutrophil cytoplasmic antibodies in T-cell receptor alphadeficientmice with chronic colitis. Gastroenterology 113:1828–1835PubMedCrossRefGoogle Scholar
  93. 93.
    Mizoguchi A, Mizoguchi E, Chiba C, Bhan AK (1996) Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J Exp Med 184:707–715PubMedCrossRefGoogle Scholar
  94. 94.
    Rieder F, Fiocchi C (2009) Intestinal fibrosis in IBD – a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol 6:228–235PubMedCrossRefGoogle Scholar
  95. 95.
    Fichtner-Feigl S, Strober W, Kawakami K et al (2006) IL-13 signaling through the IL-13[alpha]2 receptor is involved in induction of TGF-[beta]1 production and fibrosis. Nat Med 12:99–106PubMedCrossRefGoogle Scholar
  96. 96.
    Fichtner-Feigl S, Young CA, Kitani A et al (2008) IL-13 signaling via IL-13R[alpha]2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology 135:2003–2013.e7PubMedCrossRefGoogle Scholar
  97. 97.
    Kobori A, Yagi Y, Imaeda H et al (2010) Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol 45:999–1007PubMedCrossRefGoogle Scholar
  98. 98.
    Schmitz J, Owyang A, Oldham E et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490PubMedCrossRefGoogle Scholar
  99. 99.
    Rankin AL, Mumm JB, Murphy E et al (2010) IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol 184:1526–1535PubMedCrossRefGoogle Scholar
  100. 100.
    Sponheim J, Pollheimer J, Olsen T et al (2010) Inflammatory bowel diseaseassociated interleukin-33 is preferentially expressed in ulcerationassociated myofibroblasts. Am J Pathol 177:2804–2815PubMedCrossRefGoogle Scholar
  101. 101.
    Otte J, Rosenberg IM, Podolsky DK (2003) Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 124:1866–1878PubMedCrossRefGoogle Scholar
  102. 102.
    Fedorak RN, Gangl A, Elson CO et al (2000) Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The interleukin 10 inflammatory bowel disease cooperative study group. Gastroenterology 119:1473–1482PubMedCrossRefGoogle Scholar
  103. 103.
    Sinha A, Nightingale J, West KP et al (2003) Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis. N Engl J Med 349:350–357PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Medizinische Klink für Gastroenterologie, Infektiologie und RheumatologieCharité - Campus Benjamin FranklinBerlinDeutschland
  2. 2.Universitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations