Advertisement

Chemoecology

, Volume 28, Issue 4–5, pp 123–130 | Cite as

Identification and analysis of odorant-binding protein genes from the wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) based on its transcriptome

  • Yingshuai Cao
  • Jianbai Liu
  • Jixing Guo
  • Han Wu
  • Guren Zhang
Original Article

Abstract

Pardosa pseudoannulata, one of the dominant predators in the paddy ecosystem, is a potential resource in the biological control of rice pests. Olfaction is crucial for insect behaviors such as feeding, mating and foraging, and odorant-binding proteins (OBPs) play a vital role in smell sensing, so we suppose that OBPs may be also important in spider behaviors. In this study, we identified two putative OBP genes and obtained their complete cDNA sequences. PpseOBP1 is 842 bp long and encodes a 188 amino acids protein. PpseOBP2 is 996 bp long and encodes a 213 amino acids protein. By our predictions and analysis, both of the PpseOBPs share some similar physicochemical and structural characteristics with insect classic OBP genes, but they do not strictly observe the cysteine pattern of OBPs in insects, in which there are three amino acid residues between the second and the third cysteine residues but 27 amino acid residues in P. pseudoannulata. Phylogenetic analysis showed that two PpseOBPs clustered together at the edge of the tree, indicating their distant relationship with insects. Regarding insects, PpseOBPs were most closely related to the Periplaneta americana OBP1. Both PpseOBPs are mainly expressed in appendages (pedipalps and legs). Expression of PpseOBP1 was significantly higher in female appendages than in male appendages, while PpseOBP2 showed an extreme expression level in male pedipalps. This is the first report of molecular characterization and expression patterns of OBPs in Lycosidae and will establish a foundation for better understanding of molecular mechanisms of P. pseudoannulata olfaction and facilitate its function in biological control.

Keywords

Pardosa pseudoannulata Olfactory Odorant-binding protein Expression profiles 

Notes

Acknowledgements

This work was supported by the Special Fund for Agro-scientific Research in the Public Interest (Grant No. 201403030), the National Science Foundation for Young Scientists of China (Grant No. 31601631) and the Fundamental Research Funds for the Central Universities (Grant No. 17lgpy109).

References

  1. Allen JE, Wanner KW (2011) Asian corn borer pheromone binding protein 3, a candidate for evolving specificity to the 12-tetradecenyl acetate sex pheromone. Insect Biochem Mol Biol 41(3):141–149.  https://doi.org/10.1016/j.ibmb.2010.10.005 CrossRefPubMedGoogle Scholar
  2. Calvello M, Guerra N, Brandazza A et al (2003) Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci 60(9):1933–1943.  https://doi.org/10.1007/s00018-003-3186-5 CrossRefPubMedGoogle Scholar
  3. Cerveira AM, Jackson RR (2013) Love is in the air: olfaction-based mate-odour identification by jumping spiders from the genus Cyrba. J Ethol 31(1):29–34.  https://doi.org/10.1007/s10164-012-0345-x CrossRefGoogle Scholar
  4. Finn RD, Mistry J, Tate J et al (2010) Pfam protein families database. Nucleic Acids Res  https://doi.org/10.1093/nar/gkp985 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Foelix RF, Chu-Wang IW (1973) The morphology of spider sensilla. II Chemoreceptors Tissue Cell 5(3):461–478.  https://doi.org/10.1016/S0040-8166 (73)80038-2CrossRefPubMedGoogle Scholar
  6. Foelix RF, Rast B, Peattie AM (2012) Silk secretion from tarantula feet revisited: alleged spigots are probably chemoreceptors. J Exp Biol 215(Pt 7):1084–1089.  https://doi.org/10.1242/jeb.066811 CrossRefPubMedGoogle Scholar
  7. Forêt S, Maleszka R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16(11):1404–1413.  https://doi.org/10.1101/gr.5075706 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gong DP, Zhang HJ, Ping Z et al (2009) The Odorant Binding Protein Gene Family from the Genome of Silkworm, Bombyx mori. BMC Genom 10(1):332.  https://doi.org/10.1186/1471-2164-10-332 CrossRefGoogle Scholar
  9. Gu SH, Wu KM, Guo YY et al (2013) Identification and expression profiling of odorant binding proteins and chemosensory proteins between two wingless morphs and a winged morph of the cotton aphid Aphis gossypii glover. PLoS One 8(9):e73524.  https://doi.org/10.1371/journal.pone.0073524 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72(5):698–711.  https://doi.org/10.1016/j.neuron.2011.11.003 CrossRefPubMedGoogle Scholar
  11. Hekmat-Scafe DS, Scafe CR, Mckinney AJ et al (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12(9):1357–1369.  https://doi.org/10.1101/gr.239402 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Krieger J, Breer H (1999) Olfactory reception in invertebrates. Science 286(5440):720–728.  https://doi.org/10.1126/science.286.5440.720 CrossRefPubMedGoogle Scholar
  13. Krieger J, Nickischrosenegk EV, Mameli M et al (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26(3):297–307.  https://doi.org/10.1016/0965-1748(95)00096-8 CrossRefPubMedGoogle Scholar
  14. Leal WS, Nikonova L, Peng G (1999) Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett 464(1–2):85–90.  https://doi.org/10.1016/S0014-5793(99)01683-X CrossRefPubMedGoogle Scholar
  15. Li S, Picimbon JF, Ji S et al (2008) Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. Biochem Biophys Res Commun 372(3):464–468.  https://doi.org/10.1016/j.bbrc.2008.05.064 CrossRefPubMedGoogle Scholar
  16. Li CC, Wang Y, Li GY et al (2016) Transcriptome profiling analysis of wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) after cadmium exposure. Int J Mol Sci 17(12):2033.  https://doi.org/10.3390/ijms17122033 CrossRefPubMedCentralGoogle Scholar
  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  18. Meng X, Zhang Y, Bao H et al (2015) Sequence Analysis of Insecticide action and detoxification-related genes in the insect pest natural enemy Pardosa pseudoannulata. PLoS One 10(4):e0125242.  https://doi.org/10.1371/journal.pone.0125242 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pelosi P, Maida R (1995) Odorant-binding proteins in insects. Comp Biochem Physiol Part B: Biochem Mol Biol 111(3):503–514.  https://doi.org/10.1016/0305-0491(95)00019-5 CrossRefGoogle Scholar
  20. Pelosi P, Iovinella I, Felicioli A et al (2014) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5:320.  https://doi.org/10.3389/fphys.2014.00320 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Shu YH, Liu ZH, Zhang GR (2005) Olfactory Responses of Pardosa pseudoannulata Boes. et Str. to Sogatella furcifera (Horváth). Acta Arachnol Sin 14(2):122–125.  https://doi.org/10.3969/j.issn.1005-9628.2005.02.013 CrossRefGoogle Scholar
  22. Swarup S, Williams TI, Anholt RRH (2011) Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes. Brain Behav 10(6):648–657.  https://doi.org/10.1111/j.1601-183X.2011.00704.x CrossRefGoogle Scholar
  23. Tegoni M, Campanacci V, Cambillau C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29(5):257–264.  https://doi.org/10.1016/j.tibs.2004.03.003 CrossRefPubMedGoogle Scholar
  24. Uhl G (2013) Spider olfaction: attracting, detecting, luring and avoiding. Spider ecophysiology. Springer, Berlin, pp 141–157.  https://doi.org/10.1007/978-3-642-33989-9_11 CrossRefGoogle Scholar
  25. Vieira FG, Sánchez-Gracia A, Rozas J (2007) Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol 8(11):R235.  https://doi.org/10.1186/gb-2007-8-11-r235 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Vizueta J, Fríaslópez C, Macíashernández N et al (2017) Evolution of chemosensory gene families in arthropods: Insight from the first inclusive comparative transcriptome analysis across spider appendages. Genome Biol Evol 9(1):178–196.  https://doi.org/10.1093/gbe/evw296 CrossRefPubMedGoogle Scholar
  27. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293(5828):161–163.  https://doi.org/10.1038/293161a0 CrossRefPubMedGoogle Scholar
  28. Wang Z (2007) Bionomics and behavior of the wolf spider, Pardosa pseudoannulata (Araneae: Lycosidae). Acta Entomol Sin 50(9):927–932.  https://doi.org/10.3321/j.issn:0454-6296.2007.09.010 CrossRefGoogle Scholar
  29. Wang GR, Wu KM, Guo YY (2003) Cloning, expression and immunocytochemical localization of a general odorant-binding protein gene from Helicoverpa armigera (Hübner). Insect Biochem Mol Biol 33(1):115–124.  https://doi.org/10.1016/S0965-1748(02)00182-0 CrossRefPubMedGoogle Scholar
  30. Wang B, Huang T, Han M et al (2004) The response of Pardosa pseudoannulata’s chemoreceptor in locating the prey. Sichuan J Zool.  https://doi.org/10.3969/j.issn.1000-7083.2014.01.017 CrossRefGoogle Scholar
  31. Wang J, Peng Y, Xiao K et al (2017a) Transcriptomic response of wolf spider, Pardosa pseudoannulata, to transgenic rice expressing Bacillus thuringiensis Cry1Ab protein. BMC Biotechnol 17(1):7.  https://doi.org/10.1186/s12896-016-0325-2 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wang XQ, Wang GH, Zhu ZR et al (2017b) Spider (Araneae) predations on white-backed planthopper Sogatella furcifera in subtropical rice ecosystems, China. Pest Manag Sci 73(6):1277–1286.  https://doi.org/10.1002/ps.4459 CrossRefPubMedGoogle Scholar
  33. Whiteman NK, Pierce NE (2008) Delicious poison: genetics of Drosophila host plant preference. Trends Ecol Evol 23:473–478.  https://doi.org/10.1016/j.tree.2008.05.010 CrossRefPubMedGoogle Scholar
  34. Xiao R, Wang L, Cao Y, Zhang G (2016) Transcriptome response to temperature stress in the wolf spider Pardosa pseudoannulata (Araneae: Lycosidae). Ecol Evol 6(11):3540–3554.  https://doi.org/10.1002/ece3.2142 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Xu YL, He P, Zhang L et al (2009) Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genom 10:632–632.  https://doi.org/10.1186/1471-2164-10-632 CrossRefGoogle Scholar
  36. Xue W, Fan J, Zhang Y et al (2016) Identification and expression analysis of candidate odorant-binding protein and chemosensory protein genes by antennal transcriptome of Sitobion avenae. PLoS One 11(8):e0161839.  https://doi.org/10.1371/journal.pone.0161839 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhao JJ, Zhang Y, Fan DS, Feng JN (2017) Identification and Expression profiling of odorant-binding proteins and chemosensory proteins of Daktulosphaira vitifoliae (Hemiptera: Phylloxeridae). J Econ Entomol.  https://doi.org/10.1093/jee/tox121 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yingshuai Cao
    • 1
  • Jianbai Liu
    • 1
  • Jixing Guo
    • 1
  • Han Wu
    • 1
  • Guren Zhang
    • 1
  1. 1.State Key Laboratory for BiocontrolSun Yat-sen UniversityGuangzhouChina

Personalised recommendations