Chemoecology

, Volume 27, Issue 2, pp 65–73 | Cite as

Identification of cuticular compounds collected from Callosobruchus rhodesianus (Pic) eliciting heterospecific mating behavior with male Callosobruchus maculatus (F.)

  • Kenji Shimomura
  • Shinpei Matsui
  • Kanju Ohsawa
  • Shunsuke Yajima
Original Article
  • 196 Downloads

Abstract

Callosobruchus seed beetles (Coleoptera: Chrysomelidae: Bruchinae) are pests of stored legumes in tropical and subtropical regions. The cuticular surfaces of female Callosobruchus seed beetles contain a contact sex pheromone, which elicits copulatory behavior in congeneric males. Asymmetric cross-copulatory behavior was observed between C. maculatus and C. rhodesianus despite considerable differences in the structures of their contact sex pheromones. C. maculatus uses dicarboxylic acid, whereas C. rhodesianus uses two ketone compounds in conjunction with similar synergistic cuticular hydrocarbon blends in both cases. Male C. maculatus exhibited copulatory behavior with females of both C. maculatus and C. rhodesianus, but male C. rhodesianus mated only with congeneric females. To establish the reasons for the asymmetric cross-copulatory behavior of C. maculatus, we tried to identify the heterospecific mate-eliciting compounds in the cuticles collected from virgin C. rhodesianus females. The compounds were fractionated using acid-base partitioning and chromatography techniques and then assayed for their ability to elicit male copulatory activity. Gas chromatography–mass spectrometry (GC–MS) analysis of the active acidic fraction revealed the presence of three dicarboxylic acids: 2-methylsuberic acid (2-methyloctanedioic acid) (1), 3-methylsuberic acid (3-methyloctanedioic acid) (2), and nonanedioic acid (3). The synergistic effect was compared using synthetic standards and natural hydrocarbons. When the compounds were combined with the natural hydrocarbons, compounds 1 and 2 elicited significant copulatory activity in male C. maculatus. In contrast, relative to the effect of natural hydrocarbons alone, compound 3 did not exhibit significant copulatory activity when combined with natural hydrocarbons. The results demonstrated that the asymmetric cross-copulatory behavior of C. maculatus is induced by the presence of contact sex pheromone analogs on the cuticular surface of female C. rhodesianus. In combination with previous reports, although a saltational evolution was hypothesized for the contact sex pheromones of C. rhodesianus, this species continues to produce dicarboxylic acids functioning as pheromones that are structurally similar to those secreted by closely related species.

Keywords

Callosobruchus rhodesianus Callosobruchus maculatus Contact sex pheromone 2-Methylsuberic acid 3-Methylsuberic acid Pheromone evolution 

References

  1. Allison JD, Roff DA, Cardé RT (2008) Genetic independence of female signal form and male receiver design in the almond moth, Cadra cautella. J Evol Biol 21:1666–1672. doi:10.1111/j.1420-9101.2008.01595.x CrossRefPubMedGoogle Scholar
  2. Baker CT (2002) Mechanism for saltational shifts in pheromone communication systems. Proc Natl Acad Sci USA 99:13368–13370. doi:10.1073/pnas.222539799 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Borowiec I (1987) The genera of seed-beetles (Coleoptera: Bruchidae). Pol Pis Entomol 57: 3–207Google Scholar
  4. Bostedor RG, Karkas JD, Arison BH, Bansal VS, Vaidya S, Germershausen JI, Kurtz MM, Bergstrom JD (1997) Farnesol-derived dicarboxylic acids in the urine of animals treated with zaragozic acid A or with farnesol. J Biol Chem 272:9197–9203. doi:10.1074/jbc.272.14.9197 CrossRefPubMedGoogle Scholar
  5. Droney DC, Musto CJ, Mancuso K, Roelofs WL, Linn CE Jr (2012) The response to selection for broad male response to female sex pheromone and its implications for divergence in close-range mating behavior in the European corn borer moth, Ostrinia nubilalis. J Chem Ecol 38:1504–1512. doi:10.1007/s10886-012-0208-5 CrossRefPubMedGoogle Scholar
  6. Eliyahu D, Mori K, Takikawa H, Leal WS, Schal C (2004) Behavioral activity of stereoisomers and a new component of the contact sex pheromone of female German cockroach, Blattella germanica. J Chem Ecol 30:1839–1848. doi:10.1023/B:JOEC.0000042405.05895.3a CrossRefPubMedGoogle Scholar
  7. Eliyahu D, Nojima S, Mori K, Schal C (2008a) New contact sex pheromone components of the German cockroach, Blattella germanica, predicted from the proposed biosynthetic pathway. J Chem Ecol 34:229–237. doi:10.1007/s10886-007-9409-8 CrossRefPubMedGoogle Scholar
  8. Eliyahu D, Nojima S, Capracotta SS, Comins DL, Schal C (2008b) Identification of cuticular lipids eliciting interspecific courtship in the German cockroach, Blattella germanica. Naturwissenschaften 95:403–412. doi:10.1007/s00114-007-0339-7 CrossRefPubMedGoogle Scholar
  9. Gemeno C, Schal C (2004) Sex pheromones of cockroaches. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 179–247CrossRefGoogle Scholar
  10. Lassance JM, Groot TA, Liénard AM, Antony B, Borgwardt C, Andersson F, Hedenström F, Heckel GD, Löfstedt C (2010) Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 466:486–489. doi:10.1038/nature09058 CrossRefPubMedGoogle Scholar
  11. Niehuis O, Buellesbach J, Gibson DJ, Pothmann D, Hanner C, Mutti SN, Judson KA, Gadau J, Ruther J, Schmitt T (2013) Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494:345–348. doi:10.1038/nature11838 CrossRefPubMedGoogle Scholar
  12. Nishida R, Fukami H (1983) Female sex pheromone of the German cockroach, Blattella germanica. Mem Coll Agric Kyoto Univ 122: 1–24Google Scholar
  13. Nojima S, Shimomura K, Honda H, Yamamoto I, Ohsawa K (2007) Contact sex pheromone components of the cowpea weevil, Callosobruchus maculatus. J Chem Ecol 33:923–933. doi:10.1007/s10886-007-9266-5 CrossRefPubMedGoogle Scholar
  14. Phelan PL (1992) Evolution of sex pheromones and the role of asymmetric tracking. In: Roitberg BD, Isman MB (eds) Insect chemical ecology: an evolutionary approach. Chapman and Hall, New York, pp 265–314Google Scholar
  15. Phelan PL (1997) Genetic and phylogenetics in the evolution of sex pheromones. In: Cardé TR, Minks KA (eds) Insect pheromone research new directions. Chapman and Hall, New York, pp 563–579CrossRefGoogle Scholar
  16. Rees DP (1996) Coleoptera. In: Subramanyam B, Hagstrum DW (eds) Integrated management of insects in stored products. Marcel Dekker, New York, pp 1–40Google Scholar
  17. Rees DP (2004) Beetles (order: Coleoptera). In: Rees DP (ed) Insects of stored products. CSIRO Publishing, Canberra, pp 11–120Google Scholar
  18. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177 CrossRefGoogle Scholar
  19. Roelofs LW, Liu W, Hao G, Jiao H, Rooney PA, Linn EC Jr (2002) Evolution of moth sex pheromones via ancestral genes. Proc Natl Acad Sci USA 99:13621–13626. doi:10.1073/pnas.152445399 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Schal C, Burns EL, Jurenka RA, Blomquist GJ (1990) A new component of the female sex pheromone of Blattella germanica (L.) (Dictyoptera: Blattellidae) and interaction with other pheromone components. J Chem Ecol 16:1997–2008. doi:10.1007/BF01020511 CrossRefPubMedGoogle Scholar
  21. Shimomura K, Akasaka K, Yajima A, Mimura T, Yajima S, Ohsawa K (2010a) Contact sex pheromone components of the seed beetle, Callosobruchus analis (F.). J Chem Ecol 36:955–965. doi:10.1007/s10886-010-9841-z CrossRefPubMedGoogle Scholar
  22. Shimomura K, Mimura T, Ishikawa S, Yajima S, Ohsawa K (2010b) Variation in mate recognition specificities among four Callosobruchus seed beetles. Entomol Exp Appl 135:315–322. doi:10.1111/j.1570-7458.2010.00994.x CrossRefGoogle Scholar
  23. Shimomura K, Matsui S, Ohsawa K, Yajima S (2016) Saltational evolution of contact sex pheromone compounds of Callosobruchus rhodesianus (Pic). Chemoecology 26:15–23. doi:10.1007/s00049-015-0204-7 CrossRefGoogle Scholar
  24. Shirangi RT, Dufour DH, Williams MT, Carroll BS (2009) Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS Biol 7:e100168. doi:10.1371/journal.pbio.1000168 CrossRefGoogle Scholar
  25. Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97. doi:10.1038/hdy.2008.55 CrossRefPubMedGoogle Scholar
  26. Stetter H, Klauke E (1953) Eine neue methode zur darstellung langkettiger carbonsäuren, IV. mitteil.: darstellung einiger verzweigter mono- und dicarbonsäuren. Chem Ber 86:513–518. doi:10.1002/cber.19530860413 CrossRefGoogle Scholar
  27. Symonds MRE, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23:220–228. doi:10.1016/j.tree.2007.11.009 CrossRefPubMedGoogle Scholar
  28. Tanaka K, Ohsawa K, Honda H, Yamamoto I (1981) Copulation release pheromone, erectin, from the azuki bean weevil (Callosobruchus chinensis L.). J Pestic Sci 6:75–82. doi:10.1584/jpestics.6.75 CrossRefGoogle Scholar
  29. Tuda M, Rönn J, Buranapanichpan S, Wasano N, Arnqvist G (2006) Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with storedproduct pest status. Mol Ecol 15:3541–3551. doi:10.1111/j.1365-294X.2006.03030.x CrossRefPubMedGoogle Scholar
  30. Wyatt TD (2003) Pheromones and animal behavior: communication by smell and taste. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Xue B, Rooney PA, Kajikawa M, Okada N, Roelofs LW (2007) Novel sex pheromone desaturases in the genomes of corn borers generated through gene duplication and retroposon fusion. Proc Natl Acad Sci USA 104:4467–4472. doi:10.1073/pnas.0700422104 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yajima A, Akasaka K, Nakai T, Maehara H, Nukada T, Ohrui H, Yabuta G (2006) Direct determination of the stereoisomer constitution by 2D-HPLC and stereochemistry-pheromone activity relationship of the copulation release pheromone of the cowpea weevil, Callosobruchus maculatus. Tetrahedron 62:4590–4596. doi:10.1016/j.tet.2006.02.059 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Kenji Shimomura
    • 1
    • 2
  • Shinpei Matsui
    • 1
  • Kanju Ohsawa
    • 1
  • Shunsuke Yajima
    • 1
  1. 1.Department of Bioscience, Faculty of Applied BioscienceTokyo University of AgricultureTokyoJapan
  2. 2.Earth Biochemical Co., Ltd.TokushimaJapan

Personalised recommendations