Advertisement

Chemoecology

, Volume 26, Issue 4, pp 127–142 | Cite as

Prospects for repellent in pest control: current developments and future challenges

  • Emilie Deletre
  • Bertrand Schatz
  • Denis Bourguet
  • Fabrice Chandre
  • Livy Williams
  • Alain Ratnadass
  • Thibaud Martin
Review

Abstract

The overall interest in environmentally safe pest control methods and the rise of insecticide resistance in pest populations have prompted medical and agricultural entomology research on insect repellents in recent years. However, conducting research on repellent is challenging for several reasons: (1) the different repellent phenomena are not well defined; (2) it is difficult to test for and quantify repellent; (3) the physiological mechanisms are poorly known; (4) the field efficacy appears to be highly variable. Here, we identified five different types of repellent: expellency, irritancy, deterrency, odor masking and visual masking, and described behavioral bioassays to differentiate between them. Although these categories are currently defined by their behavioral response to different stimuli, we suggest new definitions based on their mechanism of action. We put forward three main hypotheses on the physiological mechanism: (1) a dose effect that modifies the behavior, (2) a repellent mechanism with specific receptors, or (3) inhibition of the transduction of neural information.

Keywords

Deterrent Antifeeding Odorant receptor Olfaction Gustation DEET Pest management Vector control 

Notes

Acknowledgments

The work was supported by CIRAD, IRD and MUTAVIE, Paris, France.

References

  1. Abdelgaleil SAM, El-Aswad AF, Nakatani M (2002) Molluscidal and anti-feedant activities of diterpenes from Euphorbia paralias L. Pest Manag Sci 58:479–482PubMedCrossRefGoogle Scholar
  2. Abdullah ZS, Ficken KJ, Greenfield BP, Butt TM (2014) Innate responses to putative ancestral hosts: is the attraction of Western flower thrips to pine pollen a result of relict olfactory receptors? J Chem Ecol 40:534–540PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abtew A, Subramanian S, Cheseto X, Kreiter S, Tropea Garzia G, Martin T (2015) Repellency of plant extracts against the legume flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). Insects 6:608–625PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ache BW, Young JM (2005) Olfaction: diverse species, conserved principles. Neuron 48(3):417–430PubMedCrossRefGoogle Scholar
  5. Achee N, Sardelis M, Dusfour I, Chauchan K, Grieco J (2009) Characterization of spatial repellent, contact irritant, and toxicant chemical actions of standard vector control compounds. J Am Mosquito Contr 25:156–167CrossRefGoogle Scholar
  6. Achee N, Bangs M, Farlow R, Killeen G, Lindsay S, Logan J, Moore S, Rowland M, Sweeney K, Torr S, Zwiebel L, Grieco J (2012) Spatial repellents: from discovery and development to evidence-based validation. Malaria J 11:164–182CrossRefGoogle Scholar
  7. Adeogun AO, Olojede JB, Oduola AO, Awolola TS (2012) Village-scale evaluation of PermaNet 3.0: anenhanced efficacy combination long-lasting insecticidal net against resistant populations of Anopheles gambiae s.s. MCCE 1:1–9Google Scholar
  8. Akhtar Y, Hankin CH, Isman MB (2003) Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (Lepidoptera: Noctuidae). J Insect Behav 16:811–831CrossRefGoogle Scholar
  9. Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139CrossRefGoogle Scholar
  10. Amrein H, Thorne N (2005) Gustatory perception and behavior in Drosophila melanogaster. Curr Biol 15:673–684CrossRefGoogle Scholar
  11. Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant-insect interactions. Curr Opin Plant Biol 4:351–358PubMedCrossRefGoogle Scholar
  12. Bernays EA, Chapman RF (2000) A neurophysiological study of sensitivity to a feeding deterrent in two sister species of Heliothis with different diet breadths. J Insect Physiol 46:905–912PubMedCrossRefGoogle Scholar
  13. Bernier UR, Kline DL, Posey KH (2007) Human emanations and related natural compound that inhibit mosquito host-finding abilities. In: Debboun M, Frances SP, Strickman D. Insect repellents: principles, methods and uses. New York, USA, CRC Press, Taylor and Francis Group, pp 77–100Google Scholar
  14. Blaney WM, Simmonds MSJ, Ley SV, Anderson JC, Toogood PL (1990) Antifeedant effects of azadirachtin and structurally related compounds on lepidopterous larvae. Entomol Exp appl 743 55(2):149–160Google Scholar
  15. Bohbot JD, Fu L, Le TC, Chauchan KR, Cantrell CL, Dickens JC (2011) Multiple activities of insect repellents on odorant receptors in mosquitoes. Med Vet Entomol 25:436–444PubMedCrossRefGoogle Scholar
  16. Borden JH (1997) Disruption of semiochemical-mediated aggregation in bark beetles. In: Cardé ED, Minds AK. Insect pheromone research: new directions. Chapman and Hall, New York, pp 421–438Google Scholar
  17. Brown M, Hebert AA (1997) Insect repellents: an overview. J Am Acad Dermatol 36:243–249PubMedCrossRefGoogle Scholar
  18. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274PubMedCrossRefGoogle Scholar
  19. Bruce TJA, Aradottir GI, Smart LE, Martin JL, Caulfield JC, Doherty A, Sparks CA, Woodcock CM, Birkett MA, Napier JA, Jones HD (2015) The first crop plant genetically engineered to release an insect pheromone for defence. Scientific reports 5Google Scholar
  20. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 651:175–187CrossRefGoogle Scholar
  21. Cameron R, Hopper L, Alvarez JM (2016) Use of fluorescence to determine reduction in Bemisia tabaci (Hemiptera: Aleyrodidae) nymph feeding when exposed to cyantraniliprole and imidacloprid through systemic applications. Crop Prot 84:21–26CrossRefGoogle Scholar
  22. Chadwick PR, Lord CJ (1977) Tests of pyrethroid vaporising mats against Aedes aegypti (L.) (Diptera: Culicidae). Bull Entomol Res 67:667–674CrossRefGoogle Scholar
  23. Chandre F, Darriet F, Duchon S, Finot L, Manguin S, Carnevale P, Guillet P (2000) Modifications of pyrethroid effects associated with kdr mutation in Anopheles gambiae. Med Vet Entomol 14:81–88PubMedCrossRefGoogle Scholar
  24. Chapman RF (2003) Contact chemoreception in feeding by phytophagous insects. Ann Rev Entomol 48:455–484CrossRefGoogle Scholar
  25. Christensen TA, Hildebrand JG (2002) Pheromonal and host-odor processing in the insect antennal lobe: how different? Curr Opin Neurobiol 12:393–399PubMedCrossRefGoogle Scholar
  26. Christensen TA, White J (2000) Representation of olfactory information in the brain. In: Bryant BP, Silver WL. The neurobiology of taste and smell. Wiley-Liss, New York, pp 201–232Google Scholar
  27. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Ann Rev Entomol 52:375–400CrossRefGoogle Scholar
  28. Cunningham JP (2012) Can mechanism help explain insect host choice? J Evol Biol 25:244–251PubMedCrossRefGoogle Scholar
  29. Davis EE (1985) Insect repellents: Concepts of their mode of action relative to potential sensory mechanisms in mosquitoes (Diptera: Culicidae). J Med Entomol 22:237–243PubMedCrossRefGoogle Scholar
  30. Davis EE, Sokolove PG (1976) Lactic acid-sensitive receptors on the antennae of the mosquito, Aedes aegypti. J Comp Physiol 105:43–54CrossRefGoogle Scholar
  31. de Belle JS, Heisenberg M (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263(5147):692–695PubMedCrossRefGoogle Scholar
  32. De Boer G (2006) The role of the antennae and maxillary palps in mediating food preference by larvae of the tobacco hornworm, Manduca sexta. Entomol Exp Appl 119:29–38CrossRefGoogle Scholar
  33. De Bruyne M, Clyne PJ, Carlson JR (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19:4520–4532PubMedGoogle Scholar
  34. De Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552PubMedCrossRefGoogle Scholar
  35. De Gennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C, Jasinskiene N, James AA, Vosshall LB (2013) Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498:487–491CrossRefGoogle Scholar
  36. De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580PubMedCrossRefGoogle Scholar
  37. Deletre E, Martin T, Campagne P, Bourguet D, Cadin A, Menut C, Bonafos R, Chandre F (2013) Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito. PLoS ONE 8:12CrossRefGoogle Scholar
  38. Deletre E, Chandre F, Barkman B, Menut C, Martin T (2015) Naturally occurring bioactive compounds from four essential oils against Bemisia tabaci whiteflies. Pest Manag Sci. doi: 10.1002/ps.3987 PubMedGoogle Scholar
  39. Deletre E, Martin T, Duménil C, Chandre F (2016) DEET and natrural compounds are more effective on Anopheles gambiae resistant strainsGoogle Scholar
  40. Dethier VG (1954) The physiology of olfaction in insects. Ann NY Acad Sci 58(2):139–157PubMedCrossRefGoogle Scholar
  41. Dickens JC (2006) Plant volatiles moderate response to aggregation pheromone in Colorado potato beetle. J Appl Entomol 130:26–31CrossRefGoogle Scholar
  42. Dickens JC, Bohbot JD (2013) Mini review: Mode of action of mosquitoes repellents. Pestic Biochem Phys 106(3):149–155CrossRefGoogle Scholar
  43. Dickens JC, Oliver JE, Hollister B, Davis JC, Klun JA (2002) Breaking a paradigm: male produced aggregation pheromone for the Colorado potato beetle. J Exp Biol 205:1925–1933PubMedGoogle Scholar
  44. Ditzen M, Pellegrino M, Vosshall LB (2008) Insect odorant receptors are molecular targets of the insect repellent DEET. Sciences 319:1838–1842CrossRefGoogle Scholar
  45. Dogan EB, Ayres JW, Rossignol PA (1999) Behavioural mode of action of DEET: inhibition of lactic acid attraction. Med Vet Entomol 13:97–100PubMedCrossRefGoogle Scholar
  46. Dunipace L, Meister S, McNealy C, Amrein H (2001) Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr Biol 11:822–835PubMedCrossRefGoogle Scholar
  47. Elliott M, Janes NF, Potter C (1978) The future of pyrethroids in insect control. Ann Rev Entomol 23:443–469CrossRefGoogle Scholar
  48. Finch S, Collier RH (2012) The influence of host and non-host companion plants on the behavior of pest insects in field crops. Entomol Exp Appl 142:87–96CrossRefGoogle Scholar
  49. Foster SP, Harris MO (1997) Behavioral manipulation methods for insect pest-management. Ann Rev Entomol 42:123–146CrossRefGoogle Scholar
  50. Foster SP, Denholm I, Thompson R, Poppy GM, Powell W (2005) Reduced response of insecticide resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off. Bull Entomol Res 95:37–46PubMedCrossRefGoogle Scholar
  51. Fraenkel GS (1959) The ‘raison d’être’ of secondary plant substances. Science 129:1466–1470PubMedCrossRefGoogle Scholar
  52. Galizia CG, Rössler W (2010) Parallel olfactory systems in insects: anatomy and function. Ann Rev Entomol 55:399–420CrossRefGoogle Scholar
  53. Gibson G, Torr SJ (1999) Visual and olfactory responses of haematophagous Diptera to host stimuli. Med Vet Entomol 13:2–23PubMedCrossRefGoogle Scholar
  54. Glendinning JL, Valcic S, Timmermann BN (1998) Maxillary palps can mediate taste rejection of plant allelochemicals by caterpillars. J Comp Phys 183:35–43CrossRefGoogle Scholar
  55. Glendinning JI, Brown H, Capoor M, Davis A, Gbedemah A, Long E (2001) A peripheral mechanism for behavioral adaptation to specific “bitter” taste stimuli in an insect. J Neurosci 21:3688–3696PubMedGoogle Scholar
  56. Gomez-Martin A, Duistermars BJ, Frye MA, Matthieu LM (2010) Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Front Cell Neurosci 4:1–15Google Scholar
  57. Grieco J, Achee N, Sardelis M, Chauchan K, Roberts D (2005) A novel high-troughput screening system to evaluate the behavioural response of adult mosquitoes to chemical. J Am Mosquito Contr 21:404–411CrossRefGoogle Scholar
  58. Gupta RK, Bhattacharjee AK (2007) Discovery and design of new arthropod/insect repellents by computer-aided molecular modling. In: Debboun M, Frances SP, Strickman D. Insect repellents: principles, methods and uses. CRC Press, Taylor and Francis Group, New York, pp 195–228Google Scholar
  59. Ha TS, Smith DP (2009) Odorant and pheromone receptors in insects. Front cell Neurosci 3(10):55–60Google Scholar
  60. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160PubMedCrossRefGoogle Scholar
  61. Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72:698–711PubMedCrossRefGoogle Scholar
  62. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4(4):266–275PubMedCrossRefGoogle Scholar
  63. Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance inmosquitoes. Insect Biochem Mol Biol 34:653–665PubMedCrossRefGoogle Scholar
  64. Hossaert-McKey M, Bagnères-Urbany AG (2012) Ecologie chimique le language de la nature. France, Le Cherche Midi, Chabreuil A. Lefabvre VGoogle Scholar
  65. Hougard JM, Martin T, Guillet PF, Coosemans M, Itoh T, Akogbeto M, Chandre F (2007) Preliminary field testing of a long-lasting insecticide-treated hammock against Anopheles gambiae and Mansonia spp. (Diptera: Culicidae) in West Africa. J Med Entomol 44:651–655PubMedCrossRefGoogle Scholar
  66. Irmisch S, Clavijo McCormick A, Günther J, Schmidt A, Boeckler GA, Gershenzon J, Unsicker SB, Köllner TG (2014) Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant J 80(6):1095–1107PubMedCrossRefGoogle Scholar
  67. Isman MB (1994) Botanical insecticides and antifeedants: new sources and perspectives. Pestic Res J 849(6):11–19Google Scholar
  68. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann Rev Entomol 51:45–56CrossRefGoogle Scholar
  69. Isono K, Morita H (2010) Molecular and cellular designs of insect taste receptor system. Front cell Neurosci 4:20PubMedPubMedCentralGoogle Scholar
  70. Jefferis GS, Marin EC, Stocker RF, Luo L (2001) Target neuron prespecification in the olfactory map of Drosophila. Nature 414(6860):204–208PubMedCrossRefGoogle Scholar
  71. Jermy T (1990) Prospects of antifeedant approach to pest control—a critical review. J Chem Ecol 16:3151–3166PubMedCrossRefGoogle Scholar
  72. Jilani G, Saxena RC (1990) Repellent and feeding deterrent effects of turmeric oil, sweetflag oil, neem oil, and a neem-based insecticide against lesser grain borer (Coleoptera: Bostrychidae). J Econ Entomol 83(2):629–634CrossRefGoogle Scholar
  73. Junker RR, Klupsch K, Paulus J (2015) Prior exposure to DEET interrupts positive and negative responses to olfactory cues in Drosophila melanogaster. J Insect Behav 28(1):1–14CrossRefGoogle Scholar
  74. Kain P, Boyle SM, Tharadra SK, Guda T, Pham C, Dahanukar A, Ray A (2013) Odour receptors and neurons for DEET and new insect repellents. Nature 000:1–8Google Scholar
  75. Kaupp UB (2010) Olfactory signaling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200PubMedGoogle Scholar
  76. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144PubMedCrossRefGoogle Scholar
  77. Khan ZR, Pickett JA (2004) The “push-pull” strategy for stemborer management: a case study in exploiting biodiversity and chemical ecology. In: Gurr GM, Wratten SD, Altieri MA. ecological engineering for pest management: advances in habitat manipulation for arthropods. CABI, Wallington, pp 155–164Google Scholar
  78. Khan ZR, Chiliswa P, Ampong-Nyarko K, Smart LE, Polaszek A, Wandera J, Mulaa MA (1997a) Utilisation of wild gramineous plants for management of cereal stemborers in Africa. Int J Trop Insect Sci 17:143–150CrossRefGoogle Scholar
  79. Khan ZR, Ampong-Nyarko K, Chiliswa P, Hassanali A, Kimani S, lwande WA, Overholt WA, Pickett JA, Smart LE, Woodcock CM (1997) Intercropping increases parasitism of pests. Nature 388:631–632Google Scholar
  80. Kim SH (2013) Insect GPCRs and TRP channels: putative targets for insect repellents. Interdi Bio Central 6–12Google Scholar
  81. Kimani SM, Chhabra SC, Lwande W, Khan ZR, Hassanali A, Pickett JA (2000) Airborne volatiles from Melinis minutiflora P. Beauv, a non-host plot of the two spotted stem borer. J Essent Oils Res 882(12):221–224Google Scholar
  82. Knaden K, Strutz A, Ahsan J, Sachse S, Hansson BS (2012) Spatial representation of odorant valence in an insect brain. Cell 1:392–399Google Scholar
  83. Koul O (2008) Phytochemical and insect control: an antifeedant approach. Crit Rev Plant Sci 27:1–24CrossRefGoogle Scholar
  84. Krieger J, Klink O, Mohl C, Raming K, Breer H (2003) A candidate olfactory receptor subtype highly conserved across different insect orders. J Comp Physiol A 189:519–526CrossRefGoogle Scholar
  85. Kwon Y, Kim SH, Ronderos DS, Lee Y, Akitake B, Woodward OM, Guggino WB, Smith DP, Montell C (2010) Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Curr Biol 20:1672–1678PubMedPubMedCentralCrossRefGoogle Scholar
  86. Laissue PP, Reiter C, Hiesinger PR, Halter S, Fischbach KF, Stocker RF (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405(4):543–552PubMedCrossRefGoogle Scholar
  87. Lam PYS, Frazier JL (1991) Rational approach to glucose taste chemoreceptor inhibitors as novel insect antifeedants. ACS Symp 443:400–412CrossRefGoogle Scholar
  88. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714PubMedCrossRefGoogle Scholar
  89. Leal WS (2007) Molecular-based chemical prospecting of mosquito attractants and repellents. In: Debboun M, Frances SP, Strickman D. Insect repellents: principles, methods and uses. CRC Press, Taylor and Francis Group, New York, pp 229–248Google Scholar
  90. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Ann Rev Entomol 58:373–391CrossRefGoogle Scholar
  91. Lee Y, Kim SH, Montell C (2010) Avoiding DEET through insect gustatory receptors. Neuron 67–61:903Google Scholar
  92. Mac Cain WC, Leach GJ (2007) Repellents used in fabric: the experience of the US military. In: Debboun M, Frances SP, Strickman D. Insect repellents: principles, methods and uses. Taylor and Francis Group, New York, pp 103–110Google Scholar
  93. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96(5):713–723PubMedCrossRefGoogle Scholar
  94. Marella S, Fischler W, Kong P, Asgarian S, Rueckert E, Scott K (2006) Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49:285–295PubMedCrossRefGoogle Scholar
  95. Marin EC, Jefferis GS, Komiyama T, Zhu H, Luo L (2002) Representation of the glomerular olfactory map in the Drosophila brain. Cell 109(2):243–255PubMedCrossRefGoogle Scholar
  96. Martel JW, Alford AR, Dickens JC (2005a) Laboratory and greenhouse evaluation oa synthetic host volatile attractant for Colorado potato beetle, Leptinotarsa decemlineata (Say). Agr For Entomol 7:71–78CrossRefGoogle Scholar
  97. Martel JW, Alford AR, Dickens JC (2005b) Synthetic host volatiles increase efficacy of trap cropping system for management of Colorado potato beetle, Leptinotarsa decemlineata (Say). Agr For Entomol 7:79–86CrossRefGoogle Scholar
  98. Martin T, Palix R, Kamal A, Deletre E, Bonafos R, Simon S, Ngouajio M (2013) A repellent net as a new technology to protect cabbage crop. J Econ Entomol 106:1699–1706PubMedCrossRefGoogle Scholar
  99. Martin T, Gogo EO, Saidi M, Kamal A, Deletre E, Bonafos R, Simon S, Ngouajio M (2014) Repellent effect of an alphacypermethrin treated net against the whitefly Bemisia tabaci Gennadius. J Econ Entomol 107:684–690PubMedCrossRefGoogle Scholar
  100. Matthews RW, Matthews JR (1978) Insect behavior. USA, Wiley, New YorkGoogle Scholar
  101. Melcher C, Pankratz MJ (2005) Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol 3:e305PubMedPubMedCentralCrossRefGoogle Scholar
  102. Messchendorp L, Smid HM, Van Loon JJA (1998) The role of an epipharyngeal sensillum in the perception of feeding deterrents by Leptinotarsa decemlineata larvae. J Comp Physiol 183:255–264CrossRefGoogle Scholar
  103. Miller JR, Cowles RS (1990) Stimulo-deterrent diversion: a concept and its possible application to onion maggot control. J Chem Ecol 16:3197–3212PubMedCrossRefGoogle Scholar
  104. Miller JR, Siegert PY, Amimo FA, Walker ED (2009) Designation of chemical in terms of the locomotor responses they elicit from insects: an update of Dethier et al. (1960). Ecol Behav.102:2056–2060Google Scholar
  105. Montell C (2009) A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 19:345–353PubMedPubMedCentralCrossRefGoogle Scholar
  106. Montgomery ME, Nault LR (1977) Comparative response of aphids aphids to the alarm pheromone, (E)—ß farnesene. Entomol Exp Appl 22(3):236–242CrossRefGoogle Scholar
  107. Moore SJ, Debboun M (2007) History of insect repellent. In: Debboun M, Frances SP, Strickman D. Insect repellents: principles, methods and uses. CRC Press, Taylor and Francis Group, New York, 940:3–29Google Scholar
  108. Moore SJ, Lenglet A, Hill N (2007) Plant-based insect repellents. In: Debboun M, Frances SP, Strickman D. Insect repellents: principles, methods and uses. CRC Press, Taylor and Francis Group, New YorkGoogle Scholar
  109. Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642PubMedCrossRefGoogle Scholar
  110. Nalyana G, Moore CB, Schal C (2000) Integration of repellents, attractants, and insecticides in a push pull strategy for managing the cockroach (Dictyoptera: Blatellidae) populations. J Med Entomol 37:427–434Google Scholar
  111. Narahashi T (1971) Mode of action of pyrethroids. Bull WHO 44:337–345PubMedPubMedCentralGoogle Scholar
  112. Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378PubMedCrossRefGoogle Scholar
  113. Nilsson E, Bengtsson G (2004) Endogenous free fat y acids repel and attract collembolan. J Chem Ecol 30:1431–1443PubMedCrossRefGoogle Scholar
  114. Nolen JA, Bedoukian RH, Maloney RE, Kline DL (2002) Method, apparatus and compositions for inhibiting the human scent tracking ability of mosquitoes in environmentally defined three dimensional spaces. US Patent No. 6,362,235. Patent issued March 26, 2002Google Scholar
  115. Nordlund DA (1981) Semiochemicals: a review of the terminology. In: Nordlund DA, Jones RL, Lewis WJ. Semiochemicals: their role in pest control. John Wiley and Sons, New York, pp 13–28Google Scholar
  116. Pennetier C, Chabi J, Martin T, Chandre F, Rogier C, Hougard JM, Pages F (2010) New protective battle-dress impregnated against mosquito vector bites. Parasite Vector 3:81CrossRefGoogle Scholar
  117. Pettersson J (1970) An aphid sex attractant. Insect Syst Evol 1(1):63–73CrossRefGoogle Scholar
  118. Pickett JA, Wadhams LJ, Woodcock CM, Hardie J (1992) The chemical ecology of aphids. Ann Rev 971 Entomol 37:67–90Google Scholar
  119. Pike B, Rice M, Sabine B, Zalucki MP (1987) The push-pull strategy-behavioral control of Heliothis. Australian Cotton Grow, May-July, pp 7–9Google Scholar
  120. Ramirez GIJ, Logan JG, Loza-Reyes E, Stashenko E, Moores GD (2012) Repellents inhibit P450 enzymes in Stegomyia (Aedes aegypti). PLoS ONE 7:1–8Google Scholar
  121. Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27:91–98PubMedCrossRefGoogle Scholar
  122. Ratnadass A, Frenandes P, Avelino J (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sust Dev 32:273–303CrossRefGoogle Scholar
  123. Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920CrossRefGoogle Scholar
  124. Raviv M, Antignus Y (2004) UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem Photobiol 79:219–226PubMedCrossRefGoogle Scholar
  125. Ray A (2015) Reception of odors and repellents in mosquitoes. Curr Opin Neurobiol 34:158–164PubMedCrossRefGoogle Scholar
  126. Regnault-Roger C (1997) The potential of botanical essential oils for insect pest control. Int Pest Manag Rev 2:25–34CrossRefGoogle Scholar
  127. Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Ann Rev Entomol 57:405–424CrossRefGoogle Scholar
  128. REX Consortium (2013) Heterogeneity of selection and the evolution of resistance. Trends Ecol Evol 28:110–118CrossRefGoogle Scholar
  129. Rodrigues V, Siddiqi O (1981) A gustatory mutant of Drosophila defective in pyranose receptors. Mol Gen Genet 181:406–408PubMedCrossRefGoogle Scholar
  130. Sachse S, Galizia CG (2003) The coding of odor-intensivity in the honeybee antennal lobe: local computation optimizes odour representation. Eur J Neurosci 18:2119–2132PubMedCrossRefGoogle Scholar
  131. Sanford JL, Shields VDC, Dickens JC (2013) Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, Aedes aegypti. Naturwissenschaften 100:269–273PubMedCrossRefGoogle Scholar
  132. Saxena RC, Khan ZR (1985) Electronically recorded disturbance in feeding behavior of Nephotettix virescens (Homoptera: Cicadellidae) on neem oil-treated rice plants. J Econ Entomol 78:22–226Google Scholar
  133. Schoonhoven LM (1987) What makes a caterpillar eat? The sensory codes underlying feeding behaviour. In: Chapman RF, Bernays EA, Stoffo JG. Advances in Chemoreception and Behavior. Springer, New York, pp 69–97Google Scholar
  134. Schoonhoven LM (1988) Stereoselective perception of antifeedants in insects. In: Ariens EJ, Van Rensen JJS, Welling W. Stereoselectivity of Pesticides: biological and Chemical Problems. Elsevier, Amsterdam, pp 289–302Google Scholar
  135. Schoonhoven LM, Van Loon JJA (1988) Chemoreception and feeding behavior in a caterpillar: towards a model of brain functioning in insects. Entomol Exp Appl 49:123–129CrossRefGoogle Scholar
  136. Schoonhoven LM, Van Loon JJA (2002) An inventory of taste in caterpillars: each species its own key. Acta Zool Acad Sci H 48:215–263Google Scholar
  137. Schoonhoven LM, Blaney WM, Simmonds MSJ (1992) Sensory coding of feeding deterrents in phytophagous insects. In: Bernays EA. insect-plant interactions: feeding and oviposition. CRC Press, Boca Raton, pp 59–79Google Scholar
  138. Schrek CE (1977) Techniques for the evaluation of insect repellents: a critical review. Ann Rev Entomol 22:101–119CrossRefGoogle Scholar
  139. Séjourné J, Plaçais PY, Aso Y, Siwanowicz I, Trannoy S, Thoma V, Tedjakumala SR, Rubin GM, Tchénio P, Ito K, Isabel G, Tanimoto H, Preat T (2011) Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in drosophila. Nat Neurosci 14-903–910Google Scholar
  140. Semmelhack JL, Wang JW (2009) Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459:218–223PubMedPubMedCentralCrossRefGoogle Scholar
  141. Siegert PY, Walker E, Miller JR (2009) Differential behavioral responses of Anopheles gambiae (Diptera: Culicidae) modulate mortality caused by pyrethroid-treated bednets. J Econ Entomolol 102:2061–2071CrossRefGoogle Scholar
  142. Silbering AF, Galizia CG (2007) Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J Neurosci 27(44):11966–11977PubMedCrossRefGoogle Scholar
  143. Smith HA, McSorley R (2000) Potential of field corn as barrier crop and eggplant as a trap crop for management of Bemisia argentifolii (Homoptera: Aleyrodidae) on common bean in north Florida. Fla Entomol 83:145–158CrossRefGoogle Scholar
  144. Steck K, Veit D, Grandy R, Bermudez i, Badia S, Mathews Z, Verschure P, Hansson BS, Knaden M (2012) A high-throughput behavioral paradigm for Drosophila olfaction—the Flywalk. Nat Sci Re. 1031(2):1–9Google Scholar
  145. Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista- Llanos S, Wicher D, Sachse S, Knaden M, Becher PG, Seki Y, Hansson BS (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357PubMedCrossRefGoogle Scholar
  146. Sturcow B (1959) Ueber den Geschmackssinn und den Tastinn von Leptinotarsa decemlineata Say (Chrysomelidae). Z Vergl Physiol 42:255–302Google Scholar
  147. Suh GS, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, Axel R, Anderson DJ (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431:854–859PubMedCrossRefGoogle Scholar
  148. Suh E, Bohbot JZ, Zwiebel LJ (2014) Peripheral olfactory signaling in insects. Curr Opin Insect Sci 6:86–92PubMedPubMedCentralCrossRefGoogle Scholar
  149. Syed Z, Leal WS (2008) Mosquitoes smell and avoid the insect repellent DEET. PNAS 36:13598–13603CrossRefGoogle Scholar
  150. Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A (2013) Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell 155:1365–1379PubMedPubMedCentralCrossRefGoogle Scholar
  151. Tawatsin A, Wratten SD, Scott RD, Thavara U, Techadamrongsin Y (2001) Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol 26:76–82PubMedGoogle Scholar
  152. Temu EA, Maxwell C, Munyekenye G, Howard AFV, Munga S, Avicor SW, Poupardin R, Jones JJ, Allan R, Kleinschimidt I, Ranson H (2013) Pyrethroid resistance in Anopheles gambiae, in Bomi County, Liberia, compromises malaria vector control. PLoS ONE 7:9Google Scholar
  153. Thorne N, Chromey C, Bray S, Amrein H (2004) Taste perception and coding in Drosophila. Curr Biol 14:1065–1079PubMedCrossRefGoogle Scholar
  154. Thorsteinson AJ (1960) Host selection in phytophagous insects. Ann Rev Entomol 5:193–218CrossRefGoogle Scholar
  155. Togni P, Laumann R, Medeiros M, Sujii E (2010) Odour masking of tomatoe volatiles in host plant selection of Bemisia tabaci biotype B. Entomol Exp Appl 136:164–173CrossRefGoogle Scholar
  156. Tosh CR, Brogan B. 2014. Control of tomato whiteflies using the confusion effect of plant odours. Agron Sustain Dev 1–11Google Scholar
  157. Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Ann Rev Physiol 71:307–332CrossRefGoogle Scholar
  158. Tsitoura P, Koussis K, Iatrou K (2015) Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents. J Biol Chem 290(12):7961–7972PubMedPubMedCentralCrossRefGoogle Scholar
  159. Turlings TCJ, Gouinguené S, Degen T, Fritzsche-Hoballah ME (2002) The chemical ecology of plant-caterpillar–parasitoid interactions. In: Tscharntke T, Hawkins BA. Multitrophic level interactions. Cambridge University Press, Cambridge, pp 148–173Google Scholar
  160. Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Op Plant Biol 12:479–485CrossRefGoogle Scholar
  161. Van Mele P, Vayssieres JF, Adandonon A, Sinzogan A (2009) Ant cues affect the oviposition behaviour of fruit flies (Diptera: Tephritidae) in Africa. Physiol Entomol 34:256–261CrossRefGoogle Scholar
  162. Vassar R, Chao SK, Sitcheran R, Nunez JM, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–991PubMedCrossRefGoogle Scholar
  163. Vet LE, Lenteren JV, Heymans M, Meelis E (1983) An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol Entomol 8(1):97–106CrossRefGoogle Scholar
  164. Visser JH (1988) Host-plant finding by insects—orientation, sensory input and search patterns. J Insect Physiol 34:259–268CrossRefGoogle Scholar
  165. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163PubMedCrossRefGoogle Scholar
  166. Vosshall LB, Hansson BS (2011) A unified nomenclature system for the insect olfactory coreceptor. Chem Sens 36(6):497–498CrossRefGoogle Scholar
  167. Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophilla. Ann Rev Neurosci 30:505–533PubMedCrossRefGoogle Scholar
  168. Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159PubMedCrossRefGoogle Scholar
  169. Wada-Katsumata A, Silverman J, Schal C (2013) Changes in taste neuron support the emergence of an adaptative behavior in cockroaches. Science 340:972–975PubMedCrossRefGoogle Scholar
  170. Wang Z, Singhvi A, Kong P, Scott K (2004) Taste representations in the Drosophila brain. Cell 117:981–991PubMedCrossRefGoogle Scholar
  171. Warthen JD, Morgan ED (1990) Insect feeding deterrents. In: Morgan ED, Mandava NB. CRC Handbook of natural pesticide, Boca Raton, pp 23–134Google Scholar
  172. Webster B, Bruce T, Pickett J, Hardie J (2010) Volatiles functioning as host cues in a blend odor become nonhost cues when presented alone to the black bean aphid. Anim Behav 79:451–457CrossRefGoogle Scholar
  173. Weintraub PG (2009) Physical control: an important tool in pest management programs. In: Ishaaya I, Horowitz AR. Biorational control of arthropods pests. Springer Science, AmsterdanGoogle Scholar
  174. White GB (2007) Terminology of insect repellents, Chapter 2. In: Debboun M, Frances SP, Strickman D. Insect repellents: principles, methods and uses. CRC Press, Taylor and Francis Group, New YorkGoogle Scholar
  175. WHO (2002) Scaling-up insecticide-treated netting programs in Africa. WHO/CDS/RBM/2002.43Google Scholar
  176. WHO (2013) Guidelines for efficacy testing of spatial repellent, Control of neglected tropical diseases. WHO pesticide evaluation scheme, p 58Google Scholar
  177. Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, Dabire R, Aikpon R, Boko M, Glitho I, Akogbeto M (2011) Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin. Parasite Vector 4:60–69CrossRefGoogle Scholar
  178. Yarmolinsky DA, Zuker CS, Ryba NJ (2009) Common sense about taste: from mammals to insects. Cell 139:234–244PubMedPubMedCentralCrossRefGoogle Scholar
  179. Zaim M, Aitio A, Nakashima N (2000) Safety of pyrethroid-treated mosquito nets. Med Vet Entomol 14:1–5PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Emilie Deletre
    • 1
    • 2
  • Bertrand Schatz
    • 3
  • Denis Bourguet
    • 4
  • Fabrice Chandre
    • 5
  • Livy Williams
    • 6
  • Alain Ratnadass
    • 1
  • Thibaud Martin
    • 1
    • 2
  1. 1.UR Hortsys, CIRAD, Campus de BaillarguetMontpellierFrance
  2. 2.Department plant health, ICIPENairobiKenya
  3. 3.Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) UMR 5175CNRS-University of Montpellier, University Paul Valéry-EPHEMontpellierFrance
  4. 4.UMR CBGP, INRA-CIRAD-IRD-Montpellier SupAgro, Campus de BaillarguetMontferrierFrance
  5. 5.UMR MIVEGEC, IRD-CNRS-UMMontpellier Cedex 5France
  6. 6.USDA-ARS, European Biological Control Laboratory, Campus de BaillarguetMontferrierFrance

Personalised recommendations