, Volume 25, Issue 5, pp 243–259 | Cite as

Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia)

  • Antony van der Ent
  • Peter Erskine
  • Sukaibin Sumail
Research Paper


Sabah (Malaysia) has one of the largest surface expressions of ultramafic rocks on Earth and in parallel hosts one of the most species-rich floras. Despite the extensive knowledge of the botanical diversity and the chemistry of these substrates, until recently the records for nickel (Ni) hyperaccumulator plants in the area have been scant. Recent intensive screening has resulted in 19 new records, adding to the 5 previously known from Sabah. The results of this study indicate that most Ni hyperaccumulator plants in Sabah are restricted to successional habitats (ridges, river banks, secondary vegetation) at elevations <1200 m a.s.l. Moreover, Ni hyperaccumulators are locally common both in terms of number of individuals and relative number of species. Nickel hyperaccumulation occurs most frequently in the Order Malpighiales (families Dichapetalaceae, Phyllanthaceae, Salicaceae, Violaceae), and is particularly common in the Phyllanthaceae (genera Phyllanthus, Glochidion). Comparison of soil chemistry with elements accumulated in hyperaccumulator foliage showed significant correlation between soil exchangeable Ca, K, P and the foliar concentrations of these elements. No direct relationship was found between soil Ni and foliar Ni, although foliar Ni was negatively correlated with soil pH. Nickel hyperaccumulation has been hypothesised to fulfil herbivory protection functions, but extensive herbivory-induced leaf damage on Ni hyperaccumulators in Sabah was common, and specialist (Ni-tolerant) insect herbivores were found on several species in this study. The identification of Ni hyperaccumulators is necessary to facilitate their conservation and potential future utilisation in Ni phytomining.


Allelopathy Dimethylglyoxime Elemental herbivory defense Kinabalu Park 



We wish to thank David Mulligan (UQ), Mark Tibbett (UWA) and Alan Baker (UQ, University of Melbourne) for their advice and encouragement. We also wish to thank Rimi Repin, Rositti Karim (Sabah Parks) and John Sugau and Postar Miun (Sabah Forestry Department) for their support. We wish to express our gratitude to Sabah Parks and the Sabah Forestry Department for granting permission to conduct research in Kinabalu Park, Hampuan FR, Bidu-Bidu Hills FR and Trus Madi FR. The University of Queensland is gratefully acknowledged for financial support that made this project possible. Finally, we thank Rogier van Vugt for photographing and Jeremy Holloway (Natural History Museum, London, UK) for identifying the Geometric Moth larvae. Antony van der Ent has been the recipient of IPRS and UQRS scholarships in Australia.


  1. Baker AJM, Proctor J, van Balgooy MMJ, Reeves RD (1992) Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 291–304Google Scholar
  2. Baker AJM, Ernst WHO, Van der Ent A, Malaisse F, Ginocchio R (2010) Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In: Batty LC, Hallberg KB (eds) Ecology of industrial pollution. Cambridge University Press, Cambridge, pp 7–40CrossRefGoogle Scholar
  3. Beaman JH (2005) Mount Kinabalu: hotspot of plant diversity in Borneo. Biologiske Skrifter 55:103–127Google Scholar
  4. Becquer T, Bourdon E, Pétard J (1995) Disponibilité du nickel le long d’une toposéquence de sols développés sur roches ultramafiques de Nouvelle-Calédonie. Cr Acad Sci Ii A 321(7):585–592Google Scholar
  5. Boyd RS (1998) Hyperaccumulation as a plant defense strategy. In: Brooks, R.R. (ed) Plants that hyperaccumulate heavy metals; their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, England, pp 181–201Google Scholar
  6. Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162(3):563–567CrossRefGoogle Scholar
  7. Boyd RS (2009) High-nickel insects and nickel hyperaccumulator plants: a review. Insect Sci 16(1):19–31. doi: 10.1111/j.1744-7917.2009.00250.x CrossRefGoogle Scholar
  8. Boyd RS (2012) Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci 195:88–95CrossRefPubMedGoogle Scholar
  9. Boyd RS, Jaffré T (2001) Phytoenrichment of soil Ni content by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. S Afr J Sci 97:1–5Google Scholar
  10. Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8(1):1–7CrossRefGoogle Scholar
  11. Boyd RS, Wall MA, Jaffré T (2009) Do Tropical Nickel Hyperaccumulators Mobilize Metals into Epiphytes? A Test Using Bryophytes from New Caledonia. Northeastern Naturalist 16(5):139–154CrossRefGoogle Scholar
  12. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, PortlandGoogle Scholar
  13. Brooks RR, Wither ED (1977) Nickel accumulation by Rinorea bengalensis (Wall) O.K. J Geochem Explor 7:295–300CrossRefGoogle Scholar
  14. Brooks RR, Wither ED, Zepernick B (1977) Cobalt and nickel in Rinorea species. Plant Soil 47(3):707–712CrossRefGoogle Scholar
  15. Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85(3):801–803PubMedCentralCrossRefPubMedGoogle Scholar
  16. Brune A, Dietz KJ (1995) A comparative analysis of element composition of roots and leaves of barley seedlings grown in the presence of toxic cadmium, molybdenum, nickel, and zinc concentrations. J Plant Nutr 18(4):853–868CrossRefGoogle Scholar
  17. Bryan JE, Shearman PL, Asner GP, Knapp DE, Aoro G, Lokes B (2013) Extreme differences in forest degradation in Borneo: comparing practices in Sarawak, Sabah, and Brunei. PLoS One 8(7):e69679PubMedCentralCrossRefPubMedGoogle Scholar
  18. Callahan DL, Roessner U, Dumontet V, Perrier N, Wedd AG, O’Hair RAJ et al (2008) LC-MS and GC-MS metabolite profiling of nickel (II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel (II) ligand. Phytochemistry 69(1):240–251CrossRefPubMedGoogle Scholar
  19. Cheruiyot DJ, Boyd RS, Moar WJ (2013) Exploring lower limits of plant elemental defense by cobalt, copper, nickel, and zinc. J Chem Ecol 39(5):666–674CrossRefPubMedGoogle Scholar
  20. Cole MM (1971) Biogeographical/geobotanical and biogeochemical investigations connected with exploration for nickel-copper ores in the hot wet summer/dry winter savanna woodland environment. J S Afr I Min Metall 71:199–209Google Scholar
  21. Dohrmann R (2006) Cation exchange capacity methodology II: a modified silver–thiourea method. Appl Clay Sci 34(1–4):38–46CrossRefGoogle Scholar
  22. El Mehdawi AF, Pilon-Smits EAH (2011) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14(1):1–10. doi: 10.1111/j.1438-8677.2011.00535.x CrossRefGoogle Scholar
  23. El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011a) Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory. Curr Biol 21(17):1440–1449. doi: 10.1016/j.cub.2011.07.033 CrossRefPubMedGoogle Scholar
  24. El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011b) Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy? New Phytol 191(1):120–131. doi: 10.1111/j.1469-8137.2011.03670.x CrossRefPubMedGoogle Scholar
  25. Govaerts R, Frodin DG, Radcliffe-Smith A (2000) World Checklist and Bibliography of Euphorbiaceae. The Royal Botanic Gardens, KewGoogle Scholar
  26. Hoffmann P, Baker A, Madulid DA, Proctor J (2003) Phyllanthus balgooyi (Euphorbiaceae sl), a new nickel-hyperaccumulating species from Palawan and Sabah. Blumea 48:193–199CrossRefGoogle Scholar
  27. Hoffmann P, Kathriarachchi H, Wurdack KJ (2006) A phylogenetic classification of Phyllanthaceae (Malpighiales; Euphorbiaceae sensu lato). Kew Bull 61:37–53Google Scholar
  28. Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580CrossRefPubMedGoogle Scholar
  29. Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kathriarachchi H, Samuel R, Hoffmann P, Milnarec J, Wurdack KJ, Ralimanana H, Stuessy TF, Chase MW (2006) Phylogenetics of tribe Phyllantheae (Phyllanthaceae; Euphorbiaceae sensu lato) based on nrITS and plastid matK DNA sequence data. Am J Bot 93:637–655CrossRefPubMedGoogle Scholar
  31. Kawakita A (2010) Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Species Biol 25(1):3–19CrossRefGoogle Scholar
  32. Kersten W, Brooks RR, Reeves RD, Jaffré T (1979) Nickel uptake by New Caledonian species of Phyllanthus. Taxon 28(5):529–534CrossRefGoogle Scholar
  33. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534CrossRefPubMedGoogle Scholar
  34. Kukier U, Chaney RL (2001) Amelioration of nickel phytotoxicity in muck and mineral soils. J Environ Qual 30(6):1949–1960CrossRefPubMedGoogle Scholar
  35. Lee J, Brooks RR, Reeves RD, Boswell C, Jaffré T (1977) Plant-soil relationships in a New Caledonian serpentine flora. Plant Soil 46(3):675–680CrossRefGoogle Scholar
  36. Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428CrossRefGoogle Scholar
  37. Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98(3):379–384CrossRefGoogle Scholar
  38. McNear DH, Chaney RL, Sparks DL (2010) The hyperaccumulator Alyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry 71(2–3):188–200CrossRefPubMedGoogle Scholar
  39. Mesjasz-Przybylowicz J, Przybylowicz WJ (2001) Phytophagous insects associated with the nickel hyperaccumulating plant—Berkheya coddii (Asteraceae) in Mpumalanga, South Africa. S Afr J Sci 97:596–598Google Scholar
  40. Miranda M, Benedito JL, Blanco-Penedo I, López-Lamas C, Merino A, López-Alonso M (2009) Metal accumulation in cattle raised in a serpentine-soil area: relationship between metal concentrations in soil, forage and animal tissues. J Trace Elem Med Biol 23(2):231–238CrossRefPubMedGoogle Scholar
  41. Perrier N, Colin F, Jaffré T, Ambrosi J-P, Rose J, Bottero J-Y (2004) Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. CR Geosci 336(6):567–577CrossRefGoogle Scholar
  42. Peterson LR, Trivett V, Baker AJM, Aguiar C, Pollard AJ (2003) Spread of metals through an invertebrate food chain as influenced by a plant that hyperaccumulates nickel. Chemoecology 13(2):103–108Google Scholar
  43. Pollard AJ (2000) Metal hyperaccumulation: a model system for coevolutionary studies. New Phytol 146(2):179–181CrossRefGoogle Scholar
  44. Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217–218:8–17. doi: 10.1016/j.plantsci.2013.11.011 CrossRefPubMedGoogle Scholar
  45. Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol 6(1–2):105–124CrossRefGoogle Scholar
  46. Proctor J, Phillipps C, Duff G, Heaney A, Robertson F (1988) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. Environment, forest structure and floristics. J Ecol 76(2):320–340CrossRefGoogle Scholar
  47. Proctor J, Phillipps C, Duff GK, Heaney A, Robertson FM (1989) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia, II. Some forest processes. J Ecol 77:317–331CrossRefGoogle Scholar
  48. Proctor J, Baker AJM, Van Balgooy MMJ, Bruijnzeel LA, Jones S, Madulid D (2000) Mount Bloomfield, Palawan, Philippines: forests on greywacke and serpentinized peridotite. Edinb J Bot 57(1):121–139CrossRefGoogle Scholar
  49. Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, MelbourneGoogle Scholar
  50. Reeves RD (1992) Hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 253–277Google Scholar
  51. Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249(1):57–65CrossRefGoogle Scholar
  52. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (ed) Phytoremediation of metal-contaminated soils, Proceedings of the NATO Advanced Study Institute, Třešt’ Castle, Czech Republic, 18–30 August 2002, NATO Science Series: IV: Earth and Environmental Sciences 68:25–52Google Scholar
  53. Reeves RD, Baker AJM, Borhidi A, Berazain R (1996) Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133(2):217–224CrossRefGoogle Scholar
  54. Reeves RD, Baker AJM, Borhidi A, Berazain R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83(1):1–10CrossRefGoogle Scholar
  55. Reynolds G, Payne J, Sinun W, Mosigil G, Walsh RPD (2011) Changes in forest land use and management in Sabah, Malaysian Borneo, 1990–2010, with a focus on the Danum Valley region. Philos Trans R Soc B Biol Sci 366(1582):3168–3176CrossRefGoogle Scholar
  56. Schwartz MD, Wall MA (2001) Melanotrichus boydi, a new species of plant bug (Heteroptera: Miridae: Orthotylini) restricted to the nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae). Pan Pac Entomol 77:39–44Google Scholar
  57. Tappero R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJT et al (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175(4):641–654CrossRefPubMedGoogle Scholar
  58. Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013a) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–334Google Scholar
  59. Van der Ent A, Baker AJM, Van Balgooy MMJ, Tjoa A (2013b) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79CrossRefGoogle Scholar
  60. Van der Ent A, Mulligan D, Erskine P (2013c) Discovery of nickel hyperaccumulators from Kinabalu Park, Sabah (Malaysia) for potential utilization in phytomining. Enviromine 2013, Santiago, Chile 4–6 December 2013Google Scholar
  61. Van der Ent A, Repin R, Sugau J, Wong KM (2014) The Ultramafic Flora of Sabah: An introduction to the plant diversity on ultramafic soils. Natural History Publications (Borneo), Kota Kinabalu. ISBN 9789838121521Google Scholar
  62. Wagner WL, Lorence DH (2011) A nomenclature of Pacific oceanic island Phyllanthus (Phyllanthaceae), including Glochidion. Phytokeys 4:67–74CrossRefPubMedGoogle Scholar
  63. Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82CrossRefGoogle Scholar
  64. Weng LL, Lexmond TMT, Wolthoorn AA, Temminghoff EJME, Van Riemsdijk WHW (2003) Phytotoxicity and bioavailability of nickel: chemical speciation and bioaccumulation. Environ Toxicol Chem 22(9):2180–2187CrossRefPubMedGoogle Scholar
  65. Wither ED, Brooks RR (1977) Hyperaccumulation of nickel by some plants of Southeast Asia. J Geochem Explor 8(3):579–583CrossRefGoogle Scholar
  66. Wong KM (1992) Sabah’s plant life: a new look at a priceless wonder. In: Anon. (eds) The environment—the future is in our hands. Intan Junior Chamber, Kota KinabaluGoogle Scholar
  67. Zhang L, Angle JS, Chaney RL (2006) Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum muraleinhibit seed germination of competing plants? New Phytol 173(3):509–516. doi: 10.1111/j.1469-8137.2006.01952.x CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Antony van der Ent
    • 1
  • Peter Erskine
    • 1
  • Sukaibin Sumail
    • 2
  1. 1.Centre for Mined Land Rehabilitation, Sustainable Minerals InstituteThe University of QueenslandBrisbaneAustralia
  2. 2.Sabah ParksKota KinabaluMalaysia

Personalised recommendations