Chemoecology

, Volume 25, Issue 4, pp 169–178 | Cite as

Variation in alkaloid-based microbial defenses of the dendrobatid poison frog Oophaga pumilio

  • Annemarie E. Mina
  • Andras K. Ponti
  • Nicole L. Woodcraft
  • Erin E. Johnson
  • Ralph A. Saporito
Research Paper

Abstract

Conspicuously colored dendrobatid frogs possess alkaloid-based antipredator defenses that are sequestered from a diet of arthropods. The type and quantity of alkaloids in dendrobatids vary substantially with geographic location, mainly due to differences in arthropod availability. It has been experimentally demonstrated that some individual alkaloids inhibit the growth of certain microbes, and that different alkaloids vary in their antimicrobial efficacy. We further tested this hypothesis by examining the antimicrobial effectiveness of naturally occurring mixtures of alkaloids (i.e., alkaloid cocktails) isolated from the dendrobatid frog Oophaga pumilio from five different locations in Costa Rica and Panama. Alkaloid cocktails in frogs from these locations varied significantly in their alkaloid composition. Bacterial cultures of Escherichia coli and Bacillus subtilis, and the fungus Candida albicans were subjected to alkaloid cocktails from individual frogs. These antimicrobial susceptibility tests demonstrated significant inhibition of bacterial and fungal growth of cultures incubated with these alkaloids, suggesting that the mixture of alkaloids present naturally in O. pumilio has the potential to defend frogs against natural microbes. Furthermore, there were significant differences in the degree of microbial inhibition among alkaloid cocktails, suggesting that frogs from different locations vary in their defense against microbes.

Keywords

Antimicrobial defense Bacteria Chemical defense Dendrobatidae Fungus Microorganisms Pathogen 

References

  1. Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5(6):1–6CrossRefGoogle Scholar
  2. Brodie ED, Tumbarello MS (1978) Antipredator functions of Dendrobates auratus (Amphibia, Anura, Dendrobatidae) skin secretion in regard to a snake predator (Thamnophis). J Herpetol 12:264–265CrossRefGoogle Scholar
  3. Cardall BL, Brodie ED Jr, Brodie ED III, Hanifin CT (2004) Secretion and regeneration of tetrodotoxin in the rough-skin newt (Taricha granulosa). Toxicon 44:933–938PubMedCrossRefGoogle Scholar
  4. Clark VC, Rakotomalala V, Ramilijaona O, Abrell L, Fisher BL (2006) Individual variation in alkaloid content of poison frogs of Madagascar (Mantella; Mantellidae). J Chem Ecol 32:2219–2223PubMedCrossRefGoogle Scholar
  5. Clarke BT (1996) The natural history of amphibian skin secretions, their normal functioning, and potential medical applications. Biol Rev 72:365–379CrossRefGoogle Scholar
  6. Conlon JM (2011a) The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res 343:201–212PubMedCrossRefGoogle Scholar
  7. Conlon JM (2011b) Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 68:2303–2315PubMedCrossRefGoogle Scholar
  8. Daly JW (1995) The chemistry of poisons in amphibian skin. Proc Natl Acad Sci USA 92:9–13PubMedCentralPubMedCrossRefGoogle Scholar
  9. Daly JW (2004) Marine toxins and nonmarine toxins: convergence or symbiotic organisms? J Nat Prod 67(8):1211–1215PubMedCrossRefGoogle Scholar
  10. Daly JW, Myers CW, Whittaker N (1987) Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic noxious substances in the amphibian. Toxicon 25:1023–1095PubMedCrossRefGoogle Scholar
  11. Daly JW, Secunda SI, Garraffo HM, Spande TF, Wisnieski A, Nishihra C, Cover JF Jr (1992) Variability in alkaloid profiles in neotropical poison frogs (Dendrobatidae): genetic versus environmental determinants. Toxicon 30:887–898PubMedCrossRefGoogle Scholar
  12. Daly JW, Garraffo HM, Spande TF, Jaramillo C, Rand AS (1994a) Dietary source for skin alkaloids of poison frogs (Dendrobatidae)? J Chem Ecol 20:943–954PubMedCrossRefGoogle Scholar
  13. Daly JW, Segunda SI, Garraffo HM, Spande TF, Wisnieski A, Cover JF Jr (1994b) An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32:657–663PubMedCrossRefGoogle Scholar
  14. Daly JW, Garraffo HM, Hall GE, Cover JF Jr (1996) Absence of skin alkaloids in captive raised madagascan mantelline frogs (Mantella) and sequestration of dietary alkaloids. Toxicon 35:1131–1135CrossRefGoogle Scholar
  15. Daly JW, Kaneko T, Wilham JM, Garraffo HM, Spande TF, Espinosa A, Donnelly MA (2002) Bioactive alkaloids of frog skins: combinatorial bioprospecting reveals that pumiliotoxins have a arthropod source. Proc Natl Acad Sci USA 99:13996–14001PubMedCentralPubMedCrossRefGoogle Scholar
  16. Daly JW, Noimai N, Kongkathip B, Kongkathip N, Wilham JM, Garraffo HM, Kaneko T, Spande TF, Nimit Y, Nabhitabhata J, Chan-Ard J (2004) Biologically active substances from amphibians: preliminary studies on anurans from twenty-one genera of Thailand. Toxicon 44:805–815PubMedCrossRefGoogle Scholar
  17. Daly JW, Spande TF, Garraffo HM (2005) Alkaloids from amphibian skin: a tabulation of over eight hundred compounds. J Nat Prod 68:1556–1575PubMedCrossRefGoogle Scholar
  18. Daly JW, Garraffo HM, Spande TF, Yeh HJC, Peltzer PM, Cacivio PM, Baldo JD, Faivovich J (2008) Indolizidine 239Q and quinolizidine 275I: major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon 52:858–870PubMedCentralPubMedCrossRefGoogle Scholar
  19. Erspamer V (1994) Bioactive secretions of the amphibian integument. In: Heatwole H, Barthalmus GT, Heatwole AY (eds) Amphibian biology. Surrey Beatty and Sons, Chipping NortonGoogle Scholar
  20. Fritz G, Rand SA, Depamphilis CW (1981) The aposematically colored frog, Dendrobates pumilio, is distasteful to the large, predatory ant, Paraponera clavata. Biotropica 13:158–159CrossRefGoogle Scholar
  21. Garraffo HM, Andriamaharavo NR, Vaira M, Quiroga MF, Heit C, Spande TF (2012) Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (Anura, Bufonidae): an unexpected variability in alkaloid profiles and a profusion of new structures. SpringerPlus 1:51PubMedCentralPubMedCrossRefGoogle Scholar
  22. Grant T, Colombo P, Verrastro L, Saporito RA (2012) The occurrence of defensive alkaloids in non-integumentary tissues of the Brazilian red-belly toad Melanophryniscus simplex (Bufonidae). Chemoecology 22:169–178CrossRefGoogle Scholar
  23. Gray HM, Kaiser H, Green DM (2010) Does alkaloid sequestration protect the green poison frog, Dendrobates auratus, from predator attacks? Salamandra 46:235–238Google Scholar
  24. Hantak MM, Grant T, Reinsch S, Mcginnity D, Loring M, Toyooka N, Saporito RA (2013) Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae). J Chem Ecol 39:1400–1406PubMedCrossRefGoogle Scholar
  25. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KP (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824PubMedCrossRefGoogle Scholar
  26. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proc Natl Acad Sci USA 103(9):3165–3170PubMedCentralPubMedCrossRefGoogle Scholar
  27. Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, Harris RN (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840PubMedCentralPubMedCrossRefGoogle Scholar
  28. Macfoy C, Danosus D, Sandit R, Jones TH, Garraffo HM, Spande TF, Daly JW (2005) Alkaloids of anuran skin: antimicrobial function? Zeitschrift fuer Naturforschung 60:932–937Google Scholar
  29. McClean S, Robinson RC, Shaw C (2002) Characterisation and determination of indole alkaloids in frog-skin secretions by electrospray ionisation ion trap mass spectrometry. Rapid Commun Mass Spectrom 16(5):346–354PubMedCrossRefGoogle Scholar
  30. Miller DL, Rajeev S, Brookins M, Cook J, Whittington L, Baldwin CA (2008) Concurrent infection with Ranavirus, Batrachochytrium dendrobatidis, and Aeromonas in a captive anuran colony. J Zool Wild Med 39:445–449CrossRefGoogle Scholar
  31. Nicolas A, Mor A (1995) Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol 49:277–304PubMedCrossRefGoogle Scholar
  32. Pessier AP (2002) An overview of amphibian skin disease. Semin Avian Exot Pet Med 11(3):162–174CrossRefGoogle Scholar
  33. Pessier AP, Nichols DK, Longcore JE, Fuller MS (1999) Cutaneous chytridiomycosis in poison dart frogs (Dendrobates spp.) and White’s tree frogs (Litoria caerulea). J Vet Diagn Investig 11:94–199CrossRefGoogle Scholar
  34. Pianetti A, Falcioni T, Papa S (2005) Determination of the viability of Aeromonas hydrophila in different types of water flow cytometry, and comparison with classical methods. Appl Environ Microbiol 71(12):7948–7954PubMedCentralPubMedCrossRefGoogle Scholar
  35. Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and protozoa: lessons from parasites. Biochem Biophys Acta 1788:1570–1580PubMedCrossRefGoogle Scholar
  36. Rollins-Smith LA, Carey C, Longcore J, Doersam JK, Boutte A, Bruzgal JE, Conlon JM (2002a) Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev Comp Immunol 26:471–479PubMedCrossRefGoogle Scholar
  37. Rollins-Smith LA, Reinert LK, Miera V, Conlon JM (2002b) Antimicrobial peptide defense of the Tarahumara, Rana tarahumarae. Biochem Biophy Res Commun 297:361–367CrossRefGoogle Scholar
  38. Rollins-Smith LA, Reinert LK, O’Leary CJ, Houstan LE, Woodhams DC (2005) Antimicrobial peptide defenses in amphibian skin. Integr Comp Biol 45(1):137–142PubMedCrossRefGoogle Scholar
  39. Rosenfeld Y, Barra D, Simmaco M, Shai Y, Mangoni ML (2006) A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem 281:28565–28574PubMedCrossRefGoogle Scholar
  40. Saporito RA, Donnelly MA, Garraffo HM, Spande TF, Daly JW (2006) Geographic and seasonal variation in alkaloid-based chemical defenses of Dendrobates pumilio from Bocas del Toro, Panama. J Chem Ecol 32:795–814PubMedCrossRefGoogle Scholar
  41. Saporito RA, Donnelly MA, Jain P, Garraffo HM, Spande TF, Daly JW (2007) Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 50:757–778PubMedCrossRefGoogle Scholar
  42. Saporito RA, Spande TF, Garraffo HM, Donnelly MA (2009) Arthropod alkaloids in poison frogs: a review of the ‘‘dietary hypothesis’’. Heterocycles 79:277–297CrossRefGoogle Scholar
  43. Saporito RA, Donnelly MA, Madden AA, Garraffo HM, Spande TF (2010) Sex-related differences in alkaloid defenses of the dendrobatid frog Oophaga pumilio from Cayo Nancy, Bocas del Toro, Panama. J Nat Prod 73:317–321PubMedCentralPubMedCrossRefGoogle Scholar
  44. Saporito RA, Donnelly MA, Spande TF, Garraffo HM (2012) A review of chemical ecology in poison frogs. Chemoecology 22:159–168CrossRefGoogle Scholar
  45. Savage JM (2002) The amphibians and reptiles of Costa Rica: a herpetofauna between two continents, between two seas. The University of Chicago Press, ChicagoGoogle Scholar
  46. Savitzky A, Mori A, Hutchinson DA, Saporito RA, Burghardt GM, Lillywhite HB, Meinwald J (2012) Sequestered defensive toxins in tetrapod vertebrates: principles, patterns, and prospects for future studies. Chemoecology 22(3):141–158PubMedCentralPubMedCrossRefGoogle Scholar
  47. Simaco M, Mignogna G, Barra D (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47(6):435–450CrossRefGoogle Scholar
  48. Smith BP, Tyler MJ, Kaneko T, Garraffo HM, Spande TF, Daly JW (2002) Evidence for biosynthesis of pseudophrynamine alkaloids by an Australian myobatrachid frog (Pseudophryne) and for sequestration of dietary pumiliotoxins. J Nat Prod 65:439–447PubMedCrossRefGoogle Scholar
  49. Stynoski JL, Torres-Mendoza Y, Sasa-Marin M, Saporito RA (2014) Evidence of maternal provisioning of alkaloid-based chemical defenses in the strawberry poison frog Oophaga pumilio. Ecology 95(3):587–593PubMedCrossRefGoogle Scholar
  50. Szelistowski WA (1985) Unpalatability of the poison arrow frog Dendrobates pumilio to the ctenid spider Cupiennius coccineus. Biotropica 17:345–346CrossRefGoogle Scholar
  51. Toledo RC, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol 111:1–29CrossRefGoogle Scholar
  52. Wadhwani T, Desai K, Patel D, Lawani D, Bahaley P, Joshi P, Kothari V (2008) Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials. Internet J Microbiol 7:1Google Scholar
  53. Weldon PJ, Kramer M, Gordon S, Spande TF, Daly JW (2006) A common pumiliotoxin from poison frogs exhibits enantioselective toxicity against mosquitoes. Proc Natl Acad Sci USA 103:17818–17821PubMedCentralPubMedCrossRefGoogle Scholar
  54. Weldon PJ, Cardoza YJ, VanderMeer RK, Hoffman C, Daly JW, Spande TF (2013) Contact toxicities of anuran skin alkaloids against the fire ant (Solenopsis invicta). Naturwissenschaften 100:185–192PubMedCrossRefGoogle Scholar
  55. Whitfield SM, Geerdes E, Chacon I, Ballestero Rodriguez E, Jimenez RR, Donnelly MA, Kerby JL (2013) Infection and co-infection by the amphibian chytrid fungus and ranavirus in wild Costa Rican frogs. Dis Aquat Org 104:173–178PubMedCrossRefGoogle Scholar
  56. Yotsu-Yamashita M, Kim YH, Dudey SC Jr, Choudhary G, Pfahnl A, Oshima Y, Daly JW (2004) The structure of zetekitoxin AB, a saxitoxin analog from the Panamanian golden frog Atelopus zeteki: a potent sodium-channel blocker. Proc Natl Acad Sci USA 101(13):4346–4351PubMedCentralPubMedCrossRefGoogle Scholar
  57. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Annemarie E. Mina
    • 1
  • Andras K. Ponti
    • 1
  • Nicole L. Woodcraft
    • 1
  • Erin E. Johnson
    • 1
  • Ralph A. Saporito
    • 1
  1. 1.Department of BiologyJohn Carroll UniversityUniversity HeightsUSA

Personalised recommendations