Chemoecology

, Volume 24, Issue 5, pp 201–214 | Cite as

Effects of three years’ increase in density of the geometrid Epirrita autumnata on the change in metabolome of mountain birch trees (Betula pubescens ssp. czerepanovii)

  • Vladimir Ossipov
  • Tero Klemola
  • Kai Ruohomäki
  • Juha-Pekka Salminen
Research Paper

Abstract

The principal objective of the study was to characterize effects of increasing density of the autumnal moth, Epirrita autumnata (Lepidoptera, Geometridae), for 3 successive years on the change in metabolome of mountain birch trees (Betula pubescens ssp. czerepanovii). During the three study years (2000–2002), the larval density varied from low to very high (outbreak) density. Samples of leaves were collected from the same 12 trees at the same phenological stage of the trees each year. The leaves were collected from undamaged trees in the first year, from trees slightly damaged by larvae in the second year, and from trees heavily damaged by larvae in the third year. Metabolome analysis showed that the increase in density of E. autumnata larvae and degree of damage of birch trees caused multiple biochemical changes in the leaves, including increased concentrations of phenolic compounds (proanthocyanidins and hydrolysable tannins) and reduced concentrations of nutritive metabolites (monosaccharides, amino acids and some organic acids). These changes reduced the quality of leaves as food for larvae and, probably, were associated with induced chemical resistance of the birches to herbivorous insects. Additionally, the concentration of α-tocopherol was significantly higher in both slightly and heavily damaged trees. Mechanisms of changes in the metabolism of phenolic compounds and carbohydrates, and the role of α-tocopherol in their regulation are discussed.

Keywords

Birch Carbohydrates Herbivore Induced resistance Metabolomics Phenolic compounds α-Tocopherol 

Supplementary material

49_2014_164_MOESM1_ESM.pdf (78 kb)
Supplementary material 1 (PDF 78 kb)

References

  1. Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence––a genomics approach. Plant Biotech J 1:3–22CrossRefGoogle Scholar
  2. Daub C, Kloska S, Selbig J (2003) MetaGeneAlyse: analysis of integrated transcriptional and metabolite data. Bioinformatics 19:2332–2333PubMedCrossRefGoogle Scholar
  3. Eriksson L, Trygg J, Wold S (2008) CV-ANOVA for significance testing of PLC and OPLS models. J Chemom 22:594–600CrossRefGoogle Scholar
  4. Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exper Bot 61:1549–1566CrossRefGoogle Scholar
  5. Fonville J, Richards S, Barton R, Boulange C, Ebbels T, Nicholson J, Holmes E, Dumas M (2010) The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. J Chemom 24:636–649CrossRefGoogle Scholar
  6. Gómez S, Steinbrenner A, Osorio S, Schueller M, Ferrieri R, Fernie A, Orians C (2012) From shoots to roots: transport and metabolic changes in tomato after simulated feeding by a specialist lepidopteran. Entomol Experim Appl 144:101–111CrossRefGoogle Scholar
  7. Halket J, Przyborowska A, Stein S, Down S, Chalmers R (1999) Deconvolution gas chromatography/mass spectrometry of urinary organic acid––potential for pattern recognition and automated identification of metabolite disorders. Rapid Commun Mass Spectrom 13:279–284PubMedCrossRefGoogle Scholar
  8. Haukioja E (1980) On the role of plant defences in the fluctuation of herbivore populations. Oikos 35:202–213CrossRefGoogle Scholar
  9. Haukioja E (1990) Induction of defences in trees. Ann Rev Entomol 36:25–42CrossRefGoogle Scholar
  10. Haukioja E (2003) Putting the insect into the birch–insect interaction. Oecologia 136:161–168PubMedCrossRefGoogle Scholar
  11. Haukioja E (2005) Plant defenses and population fluctuations of forest defoliators: mechanism-based scenarios. Ann Zool Fenn 42:313–325Google Scholar
  12. Haukioja E, Neuvonen S (1985) Induced long-term resistance of birch foliage against defoliators: defensive or incidental? Ecology 66:1303–1308CrossRefGoogle Scholar
  13. Haukioja E, Suomela J, Neuvonen S (1985) Long-term inducible resistance in birch foliage: triggering cues and efficacy on a defoliator. Oecologia 65:363–369CrossRefGoogle Scholar
  14. Haviola S, Kapari L, Ossipov V, Rantala M, Ruuhola T, Haukioja E (2007) Foliar phenolics are differently associated with Epirrita autumnata growth and immunocompetence. J Chem Ecol 33:1013–1023PubMedCrossRefGoogle Scholar
  15. Haviola S, Neuvonen S, Rantala M, Saikkonen K, Salminen JP, Saloniemi I, Yang S, Ruuhola T (2012) Genetic and environmental factors behind foliar chemistry of the mature mountain birch. J Chem Ecol 38:902–913PubMedCrossRefGoogle Scholar
  16. Herrmann K (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107:7–12PubMedCentralPubMedCrossRefGoogle Scholar
  17. Herrmann K, Weaver L (1999) The shikimate pathway. Ann Rev Plant Physiol Plant Mol Biol 50:473–503CrossRefGoogle Scholar
  18. Ischebeck T, Zbierzak A, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477PubMedCrossRefGoogle Scholar
  19. Kaitaniemi P, Ruohomäki K (2001) Sources of variability in plant resistance against insects: free caterpillars show strongest effects. Oikos 95:461–470CrossRefGoogle Scholar
  20. Kaitaniemi P, Ruohomäki K, Ossipov V, Pihlaja K, Haukioja E (1998) Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia 116:182–190CrossRefGoogle Scholar
  21. Karonen M, Ossipov V, Sinkkonen J, Loponen J, Haukioja E, Pihlaja K (2006) Quantitative analysis of polymeric proanthocyanidins in birch leaves with normal-phase HPLC. Phytochem Anal 17:149–156PubMedCrossRefGoogle Scholar
  22. Karonen M, Leikas A, Loponen J, Sinkkonen J, Ossipov V, Pihlaja K (2007) Reversed-Phase HPLC-ESI-MS analysis of birch leaf proanthocyanidins after their acidic degradation in the presence of nucleophiles. Phytochem Anal 18:378–386PubMedCrossRefGoogle Scholar
  23. Karonen M, Parker J, Agrawal A, Salminen JP (2010) First evidence of hexameric and heptameric ellagitannins in plants detected by liquid chromatography/electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom 24:3151–3156PubMedCrossRefGoogle Scholar
  24. Kause A, Ossipov V, Haukioja E, Lempa K, Hanhimäki S, Ossipova S (1999) Multiplicity of biochemical factors determining quality of growing birch leaves. Oecologia 120:102–112CrossRefGoogle Scholar
  25. Kessler A, Baldwin I (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328PubMedCrossRefGoogle Scholar
  26. Klemola T, Ruohomäki K, Andersson T, Neuvonen S (2004) Reduction in size and fecundity of the autumnal moth, Epirrita autumnata, in the increase phase of a population cycle. Oecologia 141:47–56PubMedCrossRefGoogle Scholar
  27. Klemola T, Andersson T, Ruohomäki K (2008) Fecundity of the autumnal moth depends on pooled geometrid abundance without a time lag: implications for cyclic population dynamics. J Animal Ecol 77:597–604CrossRefGoogle Scholar
  28. Kopka J, Schauer N, Kruger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie A, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638PubMedCrossRefGoogle Scholar
  29. Muir R, Ibanrz A, Uratsu S, Ingham E, Leslie C, McGranahan G, Batra N, Goyals S, Joseph J, Jemmis E, Dandekar A (2011) Mechanism of gallic acid biosynthesis in bacteria (Escherichia coli) and walnut (Juglans regia). Plant Mol Biol 75:555–565PubMedCentralPubMedCrossRefGoogle Scholar
  30. Munné-Bosch S (2005) Linking tocopherols with cellular signaling in plants. New Phytol 166:363–366PubMedCrossRefGoogle Scholar
  31. Munné-Bosch S, Weiler E, Alegre L, Müller M, Falk J (2007) α-Tocopherol may influence cellular signalling by modulation jasmonic acid levels in plants. Planta 225:681–691PubMedCrossRefGoogle Scholar
  32. Ossipov V, Nurmi K, Loponen J, Prokopiev N, Haukioja E, Pihlaja K (1995) HPLC isolation and identification of flavonoids from white birch Betula pubescens leaves. Biochem System Ecol 23:213–222CrossRefGoogle Scholar
  33. Ossipov V, Nurmi K, Loponen J, Haukioja E, Pihlaja K (1996) HPLC separation and identification of phenolic compounds from leaves of Betula pubescens and Betula pendula. J Chromatogr A 721:59–68CrossRefGoogle Scholar
  34. Ossipov V, Haukioja E, Ossipova S, Hanhimäki S, Pihlaja K (2001) Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem Syst Ecol 29:223–240PubMedCrossRefGoogle Scholar
  35. Ossipov V, Salminen JP, Ossipova S, Haukioja E, Pihlaja K (2003) Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochem Syst Ecol 31:3–16CrossRefGoogle Scholar
  36. Ossipov V, Ossipova S, Bykov V, Oksanen E, Koricheva J, Haukioja E (2008) Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics 4:39–51CrossRefGoogle Scholar
  37. Ossipova S, Ossipov V, Haukioja E, Loponen J, Pihlaja K (2001) Proanthocyanidins from mountain birch leaves: quantitation and properties. Phytochem Anal 12:128–133PubMedCrossRefGoogle Scholar
  38. Rippert P, Scimemi C, Dubald M, Matringe M (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol 134:100–192CrossRefGoogle Scholar
  39. Ruohomäki K (1992) Wing size variation in Epirrita autumnata (Lep., Geometridae) in relation to larval density. Oikos 63:260–266CrossRefGoogle Scholar
  40. Ruohomäki K, Chapin FS III, Haukioja E, Neuvonen S, Suomela J (1996) Delayed inducible resistance in mountain birch in response to fertilization and shade. Ecology 27:2302–2311CrossRefGoogle Scholar
  41. Ruohomäki K, Tanhuanpää M, Ayres M, Kaitaniemi P, Tammaru T, Haukioja E (2000) Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae)––grandiose theory and tedious practice. Res Popul Ecol 42:211–223CrossRefGoogle Scholar
  42. Ruuhola T, Salminen P, Salminen JP, Ossipov V (2013) Ellagitannins: defences of Betula nana against Epirrita autumnata folivory? Agric Forest Entomol 15:187–196CrossRefGoogle Scholar
  43. Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecol 25:325–338CrossRefGoogle Scholar
  44. Salminen J-P, Ossipov V, Loponen J, Haukioja E, Pihlaja K (1999) Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography-mass spectrometry. J Chromatogr 864:283–291CrossRefGoogle Scholar
  45. Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes M, Willmitzer L, Fernie A, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 259:1332–1337CrossRefGoogle Scholar
  46. Singh S, Christendat D (2006) Structure of Arabidopsis dehydroquinate dehydratase-shikimat dehydrogenase and implication for metabolic channelling in the shikimate pathway. Biochemistry 45:7787–7996PubMedCrossRefGoogle Scholar
  47. Sumner L, Amberg A, Barrett D, Beale M, Beger R, Daykin C, Fan T, Fiehn O, Goodacre R, Griffin J, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane A, Lindon J, Marriott P, Nicholls A, Reily M, Thaden J, Viant M (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221PubMedCentralPubMedCrossRefGoogle Scholar
  48. Suomela J, Ossipov V, Haukioja E (1995) Variation among and within mountain birch trees in foliage phenols, carbohydrates and amino acids, and in growth of Epirrita autumnata larvae. J Chem Ecol 21:1421–1446PubMedCrossRefGoogle Scholar
  49. Tenow O (1972) The outbreaks of Oporinia autumnata Bkh. and Operophthera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968. Zool Bidr från Uppsala 2:1–107Google Scholar
  50. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479PubMedCrossRefGoogle Scholar
  51. Umetrics (2008) User guide of SIMCA-P+ Umetrics AB, KinnelonGoogle Scholar
  52. Van den Dool H, Kratz P (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–471CrossRefGoogle Scholar
  53. Want E, Masson P (2011) Processing and analysis of GC/LC–MS-based metabolomics data. In: Metz T (ed) Metabolic profiling: methods and protocols (methods in molecular biology). Humana Press, Totowa, pp 277–298CrossRefGoogle Scholar
  54. Werner R, Bacher A, Eisenreich W (1999) Analysis of gallic acid biosynthesis via quantitative prediction of isotope labelling patterns. In: Gross G, Hemingway R, Yoshida T (eds) Plant Polyphenols 2: chemistry, biology, pharmacology, ecology. Kluwer Academic/Plenum Publishers, New York, pp 43–61CrossRefGoogle Scholar
  55. Werner R, Rossmann A, Schwarz C, Bacher A, Schmidt HL, Eisenreich W (2004) Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathway from natural oxygen isotope abundance. Phytochemistry 65:2809–2813PubMedCrossRefGoogle Scholar
  56. Wiklund S, Johansson E, Sjöström L, Mellerowicz E, Edlund U, Shockor J, Gottfries J, Moritz T, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80:115–122PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Vladimir Ossipov
    • 1
  • Tero Klemola
    • 2
  • Kai Ruohomäki
    • 2
  • Juha-Pekka Salminen
    • 1
  1. 1.Department of Chemistry, Laboratory of Organic Chemistry and Chemical BiologyUniversity of TurkuTurkuFinland
  2. 2.Department of Biology, Section of Ecology, Kevo Subarctic Research InstituteUniversity of TurkuTurkuFinland

Personalised recommendations