Chemoecology

, Volume 24, Issue 3, pp 105–119

What makes you a potential partner? Insights from convergently evolved ant–ant symbioses

  • Florian Menzel
  • Jérôme Orivel
  • Martin Kaltenpoth
  • Thomas Schmitt
Research Paper

Abstract

Mutualistic, commensalistic or parasitic interactions are unevenly distributed across the animals and plants: in certain taxa, such interspecific associations evolved more often than in others. Within the ants, associations between species of the genera Camponotus and Crematogaster evolved repeatedly and include trail-sharing associations, where two species share foraging trails, and parabioses, where two species share a nest without aggression. Camponotus and Crematogaster may possess life-history traits that favour the evolution of associations. To identify which traits are affected by the association, we investigated a neotropical parabiosis of Ca. femoratus and Cr. levior and compared it to a paleotropical parabiosis and a trail-sharing association. The two neotropical species showed altered cuticular hydrocarbon profiles compared to non-parabiotic species accompanied by low levels of interspecific aggression. Both species occurred in two chemically distinct types. Camponotus followed artificial trails of Crematogaster pheromones, but not vice versa. The above traits were also found in the paleotropical parabiosis, and the trail-following results match those of the trail-sharing association. In contrast to paleotropical parabioses, however, Camponotus was dominant, had a high foraging activity and often fought against Crematogaster over food resources. We suggest three potential preadaptations for parabiosis. First, Crematogaster uses molecules as trail pheromones, which can be perceived by Camponotus, too. Second, nests of Camponotus are an important benefit to Crematogaster and may create a selection pressure for the latter to tolerate Camponotus. Third, there are parallel, but unusual, shifts in cuticular hydrocarbon profiles between neotropics and paleotropics, and between Camponotus and Crematogaster.

Keywords

Interspecific association Formicidae Parabiosis Cuticular hydrocarbons Coevolution Aggression Recognition cues 

Supplementary material

49_2014_149_MOESM1_ESM.pdf (103 kb)
Supplementary material 1 (PDF 102 kb)
49_2014_149_MOESM2_ESM.xls (89 kb)
Supplementary material 2 (XLS 89 kb)
49_2014_149_MOESM3_ESM.pdf (10 kb)
Supplementary material 3 (PDF 10 kb)

References

  1. Adams ES (1990) Interaction between the ants Zacryptocerus maculatus and Azteca trigona: interspecific parasitization of information. Biotropica 22:200–206CrossRefGoogle Scholar
  2. Akino T (2002) Chemical camouflage by myrmecophilous beetles Zyras comes (Coleoptera: staphylinidae) and Diaritiger fossulatus (Coleoptera : Pselaphidae) to be integrated into the nest of Lasius fuliginosus (Hymenoptera : Formicidae). Chemoecology 12:83–89CrossRefGoogle Scholar
  3. Attygalle AB, Morgan ED (1985) Ant trail pheromones. Adv Insect Physiol 18:1–30CrossRefGoogle Scholar
  4. Boulay R, Cerdá X, Simon T, Roldan M, Hefetz A (2007) Intraspecific competition in the ant Camponotus cruentatus: should we expect the ‘dear enemy’ effect? Anim Behav 74:985–993CrossRefGoogle Scholar
  5. Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287CrossRefGoogle Scholar
  6. Buczkowski G, Silverman J (2005) Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Anim Behav 69:741–749Google Scholar
  7. Buschinger A (2009) Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol News 12:219–235Google Scholar
  8. Carlin NF, Hölldobler B (1983) Nestmate and kin recognition in interspecific mixed colonies of ants. Science 222:1027–1029PubMedCrossRefGoogle Scholar
  9. Carroll CR, Janzen DH (1973) Ecology of foraging by ants. Annu Rev Ecol Syst 4:231–257CrossRefGoogle Scholar
  10. Davidson DW (1988) Ecological studies of neotropical ant gardens. Ecology 69:1138–1152CrossRefGoogle Scholar
  11. Dejean A (1996) Trail sharing in African arboreal ants. Sociobiology 27:1–9Google Scholar
  12. D’Ettorre P, Heinze J (2001) Sociobiology of slave-making ants. Acta Ethol 3:67–82CrossRefGoogle Scholar
  13. D’Ettorre P, Errard C, Ibarra F, Francke W, Hefetz A (2000) Sneak in or repel your enemy: Dufour’s gland repellent as a strategy for successful usurpation in the slave-maker Polyergus rufescens. Chemoecology 10:135–142CrossRefGoogle Scholar
  14. Emery V, Tsutsui ND (2013) Recognition in a social symbiosis: chemical phenotypes and nestmate recognition behaviors of neotropical parabiotic ants. PLoS One 8:e56492PubMedCentralPubMedCrossRefGoogle Scholar
  15. Errard C, Regla JI, Hefetz A (2003) Interspecific recognition in Chilean parabiotic ant species. Insectes Soc 50:268–273CrossRefGoogle Scholar
  16. Espadaler X, Martí S (1994) La feromona de pista de Crematogaster Lund (Hymenoptera, Formicidae): Vàlida per tot el gènere? Sessió d’Entomologia ICHN-SCL 8:81–86Google Scholar
  17. Fiedler K (1998) Lycaenid-ant interactions of the Maculinea type: tracing their historical roots in a comparative framework. J Insect Conserv 2:3–14CrossRefGoogle Scholar
  18. Forel A (1898) La parabiose chez les fourmis. Bull Soc Vaudoise des Sci Nat 34:380–384Google Scholar
  19. Geiselhardt SF, Peschke J, Nagel P (2007) A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings. Naturwissenschaften 94:871–894PubMedCrossRefGoogle Scholar
  20. Gobin B, Peeters C, Billen J, Morgan ED (1998) Interspecific trail following and commensalism between the ponerine ant Gnamptogenys menadensis and the formicine ant Polyrhachis rufipes. J Insect Behav 11:361–369CrossRefGoogle Scholar
  21. Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  22. Hölldobler B, Möglich M, Maschwitz U (1981) Myrmecophilic relationship of Pella (Coleoptera: Staphylinidae) to Lasius fuliginosus (Hymenoptera: Formicidae). Psyche 88:347–374CrossRefGoogle Scholar
  23. Katzav-Gozansky T, Boulay R, Ionescu-Hirsh A, Hefetz A (2008) Nest volatiles as modulators of nestmate recognition in the ant Camponotus fellah. J Insect Physiol 54:378–385PubMedCrossRefGoogle Scholar
  24. Kaufmann E, Maschwitz U (2006) Ant-gardens of tropical Asian rainforests. Naturwissenschaften 93:216–227PubMedCrossRefGoogle Scholar
  25. Kaufmann E, Malsch AKF, Erle M, Maschwitz U (2003) Compound nesting of Strumigenys sp. (Myrmicinae) and Diacamma sp. (Ponerinae), and other nesting symbioses of myrmicine and ponerine ants in Southeast Asia. Insectes Soc 50:88–97CrossRefGoogle Scholar
  26. Kistner DH (1979) Social and evolutionary significance of social insect symbionts. In: Hermann HR (ed) Social insects. Academic Press, New York, San Francisco, London, pp 339–413Google Scholar
  27. Knaden M, Wehner R (2003) Nest defense and conspecific enemy recognition in the desert ant Cataglyphis fortis. J Insect Behav 16:717–730CrossRefGoogle Scholar
  28. Kroiss J, Svatoš A, Kaltenpoth M (2011) Rapid identification of insect CHCs using gas chromatography—ion-trap mass spectrometry. J Chem Ecol 27:420–427CrossRefGoogle Scholar
  29. Lambardi D, Dani FR, Turillazzi S, Boomsma JJ (2007) Chemical mimicry in an incipient leaf-cutting ant social parasite. Behav Ecol Sociobiol 61:843–851CrossRefGoogle Scholar
  30. Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599PubMedCrossRefGoogle Scholar
  31. Longino JT (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 151:1–150Google Scholar
  32. Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940PubMedCrossRefGoogle Scholar
  33. Menzel F, Blüthgen N (2010) Parabiotic associations between tropical ants: equal partnership or parasitic exploitation? J Anim Ecol 79:71–81PubMedCrossRefGoogle Scholar
  34. Menzel F, Schmitt T (2011) Tolerance requires the right smell: first evidence for interspecific selection on chemical recognition cues. Evolution 66–3:896–904Google Scholar
  35. Menzel F, Blüthgen N, Schmitt T (2008a) Tropical parabiotic ants: highly unusual cuticular substances and low interspecific discrimination. Front Zool 5:16PubMedCentralPubMedCrossRefGoogle Scholar
  36. Menzel F, Linsenmair KE, Blüthgen N (2008b) Selective interspecific tolerance in tropical CrematogasterCamponotus associations. Anim Behav 75:837–846CrossRefGoogle Scholar
  37. Menzel F, Schmitt T, Blüthgen N (2009) Intraspecific nestmate recognition in two parabiotic ant species: acquired recognition cues and low inter-colony discrimination. Insectes Soc 56:251–260CrossRefGoogle Scholar
  38. Menzel F, Pokorny T, Blüthgen N, Schmitt T (2010a) Trail-sharing among tropical ants: interspecific use of trail pheromones? Ecol Entomol 35:495–503CrossRefGoogle Scholar
  39. Menzel F, Woywod M, Blüthgen N, Schmitt T (2010b) Behavioural and chemical mechanisms behind a Mediterranean ant–ant association. Ecol Entomol 35:711–720CrossRefGoogle Scholar
  40. Menzel F, Staab M, Chung AYC, Gebauer G, Blüthgen N (2012) Trophic ecology of parabiotic ants: do the partners have similar food niches? Austral Ecol 37:537–546CrossRefGoogle Scholar
  41. Menzel F, Blüthgen N, Tolasch T, Conrad J, Beifuß U, Beuerle T, Schmitt T (2013) Crematoenones—a novel substance class exhibited by ants functions as appeasement signal. Front Zool 10:32PubMedCentralPubMedCrossRefGoogle Scholar
  42. Moneti G, Pieraccini G, Dani F, Turillazzi S, Favretto D, Traldi P (1997) Ion-molecule reactions of ionic species from acetonitrile with unsaturated hydrocarbons for the identification of the double-bond position using an ion trap. J Mass Spectrom 32:1371–1373CrossRefGoogle Scholar
  43. Morgan ED (2009) Trail pheromones of ants. Physiol Entomol 34:1–17CrossRefGoogle Scholar
  44. Morgan ED, Brand JM, Mori K, Keegans SJ (2004) The trail pheromone of the ant Crematogaster castanea. Chemoecology 14:119–120CrossRefGoogle Scholar
  45. Oettler J, Schmitt T, Herzner G, Heinze J (2008) Chemical profiles of mated and virgin queens, egg-laying intermorphs and workers of the ant Crematogaster smithi. J Insect Physiol 54:672–679PubMedCrossRefGoogle Scholar
  46. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Community ecology package: package ‘vegan’ 2.0-0. www.r-project.org
  47. Oldham NJ, Svatoš A (1999) Determination of the double bond position in functionalized monoenes by chemical ionization ion-trap mass spectrometry using acetonitrile as a reagent gas. Rapid Commun Mass Spectrom 13:331–336CrossRefGoogle Scholar
  48. Orivel J, Dejean A (1999) Selection of epiphyte seeds by ant-garden ants. Ecoscience 6:51–55Google Scholar
  49. Orivel J, Leroy C (2010) The diversity and ecology of ant gardens (Hymenoptera: formicidae; Spermatophyta: Angiospermae). Myrmecol News 14:73–85Google Scholar
  50. Orivel J, Errard C, Dejean A (1997) Ant gardens: interspecific recognition in parabiotic ant species. Behav Ecol Sociobiol 40:87–93CrossRefGoogle Scholar
  51. Parr CL, Gibb H (2010) Competition and the role of dominant ants. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 77–96Google Scholar
  52. Santini G, Tucci L, Ottonetti L, Frizzi F (2007) Competition trade-offs in the organisation of a Mediterranean ant assemblage. Ecol Entomol 32:319–326CrossRefGoogle Scholar
  53. Seifert B (2007) Die Ameisen Mittel- und Nordeuropas. Lutra Verlags- und Vertriebsgesellschaft, Görlitz/TauerGoogle Scholar
  54. Swain RB (1980) Trophic competition among parabiotic ants. Insectes Soc 27:377–390CrossRefGoogle Scholar
  55. R Development Core Team (2011) R: a language and environment for statistical computing. http://www.R-project.org. R Foundation for Statistical Computing, Vienna
  56. Vantaux A, Dejean A, Dor A, Orivel J (2007) Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior. Insectes Soc 54:95–99CrossRefGoogle Scholar
  57. Weißflog A (2001) Freinestbau von Ameisen (Hymenoptera: Formicidae) in der Kronenregion feuchttropischer Wälder Südostasiens. Frankfurt am Main: PhD Thesis, J. W. Goethe-UniversitätGoogle Scholar
  58. Wheeler WM (1921) A new case of parabiosis and the “ant gardens” of British Guiana. Ecology 2:89–103CrossRefGoogle Scholar
  59. Wilson EO (1965) Trail sharing in ants. Psyche 72:2–7CrossRefGoogle Scholar
  60. Wilson EO (1987) The arboreal ant fauna of Peruvian amazon forests: a first assessment. Biotropica 19:245–251CrossRefGoogle Scholar
  61. Witte V, Janssen R, Eppenstein A, Maschwitz U (2002) Allopeas myrmekophilos (Gastropoda, Pulmonata), the first myrmecophilous mollusc living in colonies of the ponerine army ant Leptogenys distinguenda (Formicidae, Ponerinae). Insectes Soc 49:301–305CrossRefGoogle Scholar
  62. Witte V, Lehmann L, Lustig A, Maschwitz U (2009) Polyrhachis lama, a parasitic ant with an exceptional mode of social integration. Insectes Soc 56:301–307CrossRefGoogle Scholar
  63. Yéo J, Molet M, Peeters C (2006) When David and Goliath share a home: compound nesting of Pyramica and Platythyrea ants. Insectes Soc 53:435–438CrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Florian Menzel
    • 1
  • Jérôme Orivel
    • 2
  • Martin Kaltenpoth
    • 3
  • Thomas Schmitt
    • 4
  1. 1.Department of Evolutionary Biology, Institute of ZoologyUniversity of MainzMainzGermany
  2. 2.UMR 8172 Ecologie de Forêts de Guyane (EcoFoG), CNRSKourou CedexFrance
  3. 3.Research Group Insect SymbiosisMax Planck Institute for Chemical EcologyJenaGermany
  4. 4.Department of Animal Ecology and Tropical Biology BiocentreUniversity of WürzburgWürzburgGermany

Personalised recommendations