Advertisement

Chemoecology

, Volume 24, Issue 2, pp 67–78 | Cite as

Chemical polymorphism in male femoral gland secretions matches polymorphic coloration in common wall lizards (Podarcis muralis)

  • D. Pellitteri-Rosa
  • J. Martín
  • P. López
  • A. Bellati
  • R. Sacchi
  • M. Fasola
  • P. Galeotti
Research Paper

Abstract

Previous studies showed that common wall lizards (Podarcis muralis) are polymorphic in colour, both sexes showing three main ventral morphs (white, yellow and red) within the same population and that the three morphs correlate with many life-history traits, including a positive assortative mating according to colour. Chemical communication plays a key role in intra-specific recognition and in social organization of lizards; thus chemical cues might be involved in morph recognition and mate choice. We used gas chromatography–mass spectrometry (GC–MS) to investigate possible differences in the lipophilic fraction of femoral gland secretions between size/age classes and to explore whether chemical secretions match male colour morphs. As expected, most males shared the same compounds, but smaller males showed significantly higher proportions of aldehydes, alcohols and ketones and significantly lower proportions of tocopherols than larger males. Interestingly, inter-morph differences in the proportion of some compounds (especially tocopherols and furanones) matched ventral colour polymorphism. Pairwise comparisons showed that white lizards had significantly different chemical profiles than both the yellow and red ones, whereas differences between yellow and red males were only marginal. A further canonical analysis of principal coordinates correctly classified 67.2 % on average of the chemical profiles according to colour morph (white 85.0 %, red 60.9 %, yellow 57.1 %). We hypothesized that chemical differences associated with colour polymorphism may play a central role in intra-specific communication and even in sexual selection, allowing individuals to choose their partners according to their age, and more interestingly according to their colour morph, in a non-random mating population system.

Keywords

Colour polymorphism Femoral gland secretions Furanones Lizards Podarcis muralis Tocopherol 

Notes

Acknowledgments

We thank one anonymous reviewer for helpful comments, and Luis Cuadra and Elena Fernández for technical assistance with chemical analyses. Financial support was provided by the project MICIIN-CGL2011-24150/BOS. This research was supported by PhD grants (Doctorate in Experimental Ecology and Geobotany) from Pavia University to D. P.-R. and A. B.

Ethical standard

The study was carried out in conformity with the Italian current laws for lizard collection and detention (Aut. Prot. DPN no. 2009-0016034).

References

  1. Aebischer NJ, Robertson PA, Kenward RE (1993) Compositional analysis of habitat use from animal radio-tracking data. Ecology 74:1313–1325CrossRefGoogle Scholar
  2. Ahnesjö J, Forsman A (2006) Correlated evolution of colour pattern and body size in polymorphic pygmy grasshoppers, Tetrix undulata. J Evol Biol 16:1308–1318CrossRefGoogle Scholar
  3. Alberts AC (1990) Chemical properties of femoral gland secretions in the desert iguana, Dipsosaurus dorsalis. J Chem Ecol 16:13–25PubMedCrossRefGoogle Scholar
  4. Alberts AC (1993) Chemical and behavioral studies of femoral gland secretions in iguanid lizards. Brain Behav Evol 41:255–260PubMedCrossRefGoogle Scholar
  5. Alberts AC, Sharp TR, Werner DI, Weldon PJ (1992) Seasonal variation of lipids in femoral gland secretions of male green iguanas, Iguana iguana. J Chem Ecol 18:703–712PubMedCrossRefGoogle Scholar
  6. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  7. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525CrossRefGoogle Scholar
  8. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, PlymouthGoogle Scholar
  9. Aragón P, López P, Martín J (2001) Chemosensory discrimination of familiar and unfamiliar conspecifics by lizards: implication of field spatial relationships between males. Behav Ecol Sociobiol 50:128–133CrossRefGoogle Scholar
  10. Bellati A (2012) Intra- and inter-population analysis of colour polymorphism in Podarcis muralis (Sauria: Lacertidae) using mitochondrial and nuclear markers. PhD thesis, University of Pavia, PaviaGoogle Scholar
  11. Bellati A, Pellitteri-Rosa D, Sacchi R, Nistri AM, Galimberti A, Casiraghi M, Fasola M, Galeotti P (2011) Molecular survey of morphological subspecies reveals new mitochondrial lineages in Podarcis muralis (Squamata: Lacertidae) from the Tuscan Archipelago (Italy). J Zool Syst Evol Res 49:240–250CrossRefGoogle Scholar
  12. Biaggini M, Bombi P, Capula M, Corti C (2011) Lucertola muraiola Podarcis muralis. In: Corti C, Capula M, Luiselli L, Razzetti E, Sindaco R (eds) Fauna d’Italia—Reptilia. Calderini, Bologna, pp 391–401Google Scholar
  13. Calsbeek B, Hasselquist D, Clobert J (2010) Multivariate phenotypes and the potential for alternative phenotypic optima in wall lizard (Podarcis muralis) ventral colour morphs. J Evol Biol 23:1138–1147PubMedCrossRefGoogle Scholar
  14. Carazo P, Font E, Desfilis E (2007) Chemosensory assessment of rival competitive ability and scent mark function in a lizard (Podarcis hispanica). Anim Behav 74:895–902CrossRefGoogle Scholar
  15. Carpenter GC (1995) The ontogeny of a variable social badge: throat color development in tree lizards. J Herpetol 29:7–13CrossRefGoogle Scholar
  16. Cheylan M (1988) Variabilité phénotypique du Lézard des murailles Podarcis muralis sur les isle de la côte provençale, France. Rev Ecol 43:287–321Google Scholar
  17. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd, PlymouthGoogle Scholar
  18. Colin SJ (1999) The naturally occurring furanones: formation and function from pheromone to food. Biol Rev Camb Philos Soc 74:259–276CrossRefGoogle Scholar
  19. Cooper WE Jr (1994) Prey chemical discrimination, foraging mode, and phylogeny. In: Pianka ER, Vitt LJ (eds) Lizard ecology: historical and experimental perspectives. Princeton University Press, Princeton, pp 95–116Google Scholar
  20. Cooper WE, Burns N Jr (1987) Social significance of ventrolateral coloration in the fence lizard, Sceloporus undulatus. Anim Behav 35:526–532CrossRefGoogle Scholar
  21. Cooper WE, Perez-Mellado V, Vitt LJ (2002) Responses to major categories of food chemicals by the lizard Podarcis lilfordi. J Chem Ecol 28:709–720PubMedCrossRefGoogle Scholar
  22. Cote J, Meylan S, Clobert J, Voituron Y (2010) Carotenoid based coloration, oxidative stress and corticosterone in common lizards. J Exp Biol 213:2116–2124Google Scholar
  23. Dawkins R, Krebs JR (1978) Animal signals: information or manipulation. In: Krebs JR, Davies NB (eds) Behavioural ecology. Sinauer Associates, Sunderland, pp 282–309Google Scholar
  24. Díaz JA, Alonso-Gómez AL, Delgado MJ (1994) Seasonal variation of gonadal development, sexual steroids, and lipid reserves in a population of the lizard Psammodromus algirus. J Herpetol 28:199–205CrossRefGoogle Scholar
  25. Elmer KR, Lehtonen TK, Meyer A (2009) Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evolution 63:2750–2757PubMedCrossRefGoogle Scholar
  26. Escobar CA, Labra A, Niemeyer HM (2001) Chemical composition of precloacal secretions of Liolaemus lizards. J Chem Ecol 27:1677–1690PubMedCrossRefGoogle Scholar
  27. Fitze PS, Cote J, San-Jose LM, Meylan S, Isaksson C, Andersson S, Rossi J-M, Clobert J (2009) Carotenoid-based colours reflect the stress response in the common lizard. PLoS One 4:e5111Google Scholar
  28. Gabirot M, López P, Martín J, de Fraipont M, Heulin B, Sinervo B, Clobert J (2008) Chemical composition of femoral secretions of oviparous and viviparous types of male common lizards Lacerta vivipara. Biochem Syst Ecol 36:539–544CrossRefGoogle Scholar
  29. Gabirot M, Castilla AM, López P, Martín J (2010) Differences in chemical signals may explain species recognition between an island lizard, Podarcis atrata, and related mainland lizards, P hispanica. Biochem Syst Ecol 38:521–528CrossRefGoogle Scholar
  30. Gabirot M, López P, Martín J (2012) Interpopulational variation in chemosensory responses to selected steroids from femoral secretions of male lizards, Podarcis hispanica, mirrors population differences in chemical signals. Chemoecology 22:65–73CrossRefGoogle Scholar
  31. Galeotti P, Pellitteri-Rosa D, Sacchi R, Gentilli A, Pupin F, Rubolini D, Fasola M (2010) Sex-, morph- and size-specific susceptibility to stress measured by haematological variables in captive common wall lizard Podarcis muralis. Comp Biochem Physiol A 157:354–363CrossRefGoogle Scholar
  32. Galeotti P, Sacchi R, Pellitteri-Rosa D, Bellati A, Cocca W, Gentilli A, Scali S, Fasola M (2013) Colour polymorphism and alternative breeding strategies: effects of parent’s colour morph on fitness traits in the common wall lizard. Evol Biol 40:385–394CrossRefGoogle Scholar
  33. Halpern M (1992) Nasal chemical senses in reptiles: structure and function. In: Gans C, Crews D (eds) Biology of the Reptilia, vol 18., PhysiologyUniversity of Chicago Press, Chicago, pp 424–532Google Scholar
  34. Huyghe K, Vanhooydonck B, Herrel A, Tadić Z, Van Damme R (2007) Morphology, performance, behavior and ecology of three color morphs in male of the lizard Podarcis melisellensis. Integr Comp Biol 47:211–220PubMedCrossRefGoogle Scholar
  35. Huyghe K, Husak JF, Herrel A, Tadic Z, Moore IT, Van Damme R, Vanhooydonck B (2009) Relationships between hormones, physiological performance and immunocompetence in a color-polymorphic lizard species, Podarcis melisellensis. Horm Behav 55:488–494PubMedCrossRefGoogle Scholar
  36. Kopena R, López P, Martín J (2009) Lipophilic compounds from the femoral gland secretions of male Hungarian green lizards, Lacerta viridis. Z Naturforsch C 64:434–440PubMedGoogle Scholar
  37. Kopena R, Martín J, López P, Herczeg G (2011) Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS ONE 6(4):e19410PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kopena R, López P, Martín J (2014) Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: an experimental test. Behav Ecol Sociobiol. doi: 10.1007/s00265-013-1672-9 Google Scholar
  39. Lepetz V, Massot M, Chaine AS, Clobert J (2009) Climate warming and the evolution of morphotypes in a reptile. Glob Change Biol 15:454–466CrossRefGoogle Scholar
  40. López P, Martín J (2005a) Chemical compounds from femoral gland secretions of male Iberian rock lizards, Lacerta monticola cyreni. Z Naturforsch C 60:632–636PubMedGoogle Scholar
  41. López P, Martín J (2005b) Age related differences in lipophilic compounds found in femoral gland secretions of male spiny-footed lizards, Acanthodactylus erythrurus. Z Naturforsch C 61:915–920Google Scholar
  42. López P, Martín J (2005c) Female Iberian wall lizards prefer male scents that signal a better cell-mediated immune response. Biol Lett 1:404–406PubMedCentralPubMedCrossRefGoogle Scholar
  43. López P, Martín J (2006) Lipids in the femoral gland secretions of male Schreiber’s green lizards, Lacerta schreiberi. Z Naturforsch C 61:763–768PubMedGoogle Scholar
  44. López P, Muñoz A, Martín J (2002) Symmetry, male dominance and female mate preferences in the Iberian rock lizard, Lacerta monticola. Behav Ecol Sociobiol 52:342–347CrossRefGoogle Scholar
  45. López P, Martín J, Cuadrado M (2003) Chemosensory cues allow male lizards Psammodromus algirus to override visual concealment of sexual identity by satellite males. Behav Ecol Sociobiol 54:218–224CrossRefGoogle Scholar
  46. López P, Amo L, Martín J (2006) Reliable signaling by chemical cues of male traits and health state in male lizards, Lacerta monticola. J Chem Ecol 32:473–488PubMedCrossRefGoogle Scholar
  47. López P, Gabirot M, Martín J (2009a) Immune challenge affects sexual coloration of male Iberian wall lizards. J Exp Zool A 331:96–104CrossRefGoogle Scholar
  48. López P, Moreira PL, Martín J (2009b) Chemical polymorphism and chemosensory recognition between Iberolacerta monticola lizard color morphs. Chem Senses 34:723–731PubMedCrossRefGoogle Scholar
  49. Louw S, Burger BV, Le Roux M, Van Wyk JH (2007) Lizard epidermal gland secretions I: chemical characterization of the femoral gland secretion of the sungazer, Cordylus giganteus. J Chem Ecol 33:1806–1818PubMedCrossRefGoogle Scholar
  50. Martín J, López P (2006a) Vitamin D supplementation increases the attractiveness of males’ scent for female Iberian rock lizards. Proc R Soc Lond B Biol Sci 273:2619–2624CrossRefGoogle Scholar
  51. Martín J, López P (2006b) Links between male quality, male chemical signals, and female mate choice in Iberian rock lizards. Funct Ecol 20:1087–1096CrossRefGoogle Scholar
  52. Martín J, López P (2006c) Age-related variation in lipophilic chemical compounds from femoral gland secretions of male lizards Psammodromus algirus. Biochem Syst Ecol 34:691–697CrossRefGoogle Scholar
  53. Martín J, López P (2011) Pheromones and reproduction in reptiles. In: Norris DO, Lopez KH (eds) Hormones and reproduction in vertebrates—reptiles. Academic Press, San Diego, pp 141–167CrossRefGoogle Scholar
  54. Martín J, Moreira PL, López P (2007) Status-signalling chemical badges in male Iberian rock lizards. Funct Ecol 21:568–576CrossRefGoogle Scholar
  55. Martín J, Amo L, López P (2008) Parasites and health affect multiple sexual signals in male common wall lizards, Podarcis muralis. Naturwissenschaften 95:293–300PubMedCrossRefGoogle Scholar
  56. Mason RT (1992) Reptilian pheromones. In: Gans C (ed) Biology of the Reptilia: hormones, brain, and behavior, vol 18. University of Chicago Press, Chicago, pp 114–228Google Scholar
  57. Mazer SJ, Damuth J (2001) Nature and causes of variation. In: Fox CW, Roff DA, Fairbrain DJ (eds) Evolutionary ecology: concepts and case studies. Oxford University Press, Oxford, pp 3–15Google Scholar
  58. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  59. McKinnon JS, Pierotti ME (2010) Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol Ecol 19(23):5101–5125PubMedCrossRefGoogle Scholar
  60. Olsson M, Madsen T, Nordby J, Wapstra E, Ujvari B, Wittsell H (2003) Major histocompatibility complex and mate choice in sand lizards. Proc R Soc Lond B Biol Sci 270:254–256CrossRefGoogle Scholar
  61. Pérez i de Lanuza G, Font E, Carazo P (2013) Color-assortative mating in a color-polymorphic lacertid lizard. Behav Ecol 24:273–279CrossRefGoogle Scholar
  62. Pérez C, Lores M, Velando A (2008) Availability of nonpigmentary antioxidant affects red coloration in gulls. Behav Ecol 19:967–973CrossRefGoogle Scholar
  63. Pike TV, Blount JD, Lindstrom J, Metcalfe NB (2007) Availability of non-carotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biol Lett 3:353–356PubMedCentralPubMedCrossRefGoogle Scholar
  64. Pryke SR, Griffith SC (2007) The relative role of male versus female mate choice in maintaining assortative pairing among discrete colour morphs. J Evol Biol 20:1512–1521PubMedCrossRefGoogle Scholar
  65. Puebla O, Bermingham E, Guichard F, Whiteman E (2007) Colour pattern as a single trait driving speciation in Hypoplectrus coral reef fishes? Proc R Soc Lond B Biol Sci 274:1265–1271CrossRefGoogle Scholar
  66. Reynolds RG, Fitzpatrick BM (2007) Assortative mating in poison-dart frogs based on an ecologically important trait. Evolution 61:2253–2259PubMedCrossRefGoogle Scholar
  67. Roulin A (2004) The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol Rev 79:1–34Google Scholar
  68. Sacchi R, Scali S, Pupin F, Gentilli A, Galeotti P, Fasola M (2007a) Microgeographic variation of color morph frequency and biometry of common wall lizards. J Zool 273:389–396CrossRefGoogle Scholar
  69. Sacchi R, Rubolini D, Gentilli A, Pupin F, Razzetti E, Scali S, Galeotti P, Fasola M (2007b) Morph-specific immunity in males of the common wall lizard, Podarcis muralis. Amphibia Reptilia 28:408–412CrossRefGoogle Scholar
  70. Sacchi R, Scali S, Pellitteri-Rosa D, Pupin F, Gentilli A, Tettamanti S, Cavigioli L, Racina L, Maiocchi V, Galeotti P, Fasola M (2010) Photographic identification in reptiles: a matter of scales. Amphibia Reptilia 31:489–502CrossRefGoogle Scholar
  71. Sacchi R, Pellitteri-Rosa D, Bellati A, Di Paoli A, Ghitti M, Scali S, Galeotti P, Fasola M (2013) Colour variation in the polymorphic common wall lizard (Podarcis muralis): an analysis using the RGB colour system. Zool Anz 252:431–439CrossRefGoogle Scholar
  72. San Jose LM, Granado-Lorencio F, Sinervo B, Fitze PS (2013) Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara). Am Nat 181:396–409PubMedCrossRefGoogle Scholar
  73. Sheridan MA (1994) Regulation of lipid-metabolism in poikilothermic vertebrates. Comp Biochem Physiol B 107:495–508Google Scholar
  74. Sinervo B (2000) Adaptation, natural selection, and optimal life history allocation in the face of genetically-based trade-offs. In: Mousseau T, Sinervo B, Endler JA (eds) Adaptive genetic variation in the wild. Oxford University Press, Oxford, pp 41–64Google Scholar
  75. Sinervo B, Lively CM (1996) The rock-paper-scissors game and the evolution of alternative mating strategies. Nature 380:240–243CrossRefGoogle Scholar
  76. Sinervo B, Zamudio KR (2001) The evolution of alternative reproductive strategies: fitness differential, heritability, and genetic correlation between sexes. J Heredity 92:198–205CrossRefGoogle Scholar
  77. Sinervo B, Miles DB, DeNardo D, Frankin T, Klukowski M (2000) Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm Behav 38:222–223PubMedCrossRefGoogle Scholar
  78. Sinervo B, Bleay C, Adampoulou C (2001) Social causes of correlational selection and the resolution of heritable colour polymorphism in a lizard. Evolution 55:2040–2052PubMedGoogle Scholar
  79. Thompson CW, Moore MC (1991) Synthopic occurrence of multiple dewlap color morphs in male Tree Lizards, Urosaurus ornatus. Copeia 1991:493–503CrossRefGoogle Scholar
  80. Thompson CW, Moore IT, Moore MC (1993) Social, environmental and genetic factors in the ontogeny of phenotypic differentiation in a lizard with alternative male reproductive strategies. Behav Ecol Sociobiol 33:137–146CrossRefGoogle Scholar
  81. Vercken E, Massot M, Sinervo B, Clobert J (2007) Colour variation and alternative reproductive strategies in females of the common lizard Lacerta vivipara. J Evol Biol 20:221–232PubMedCrossRefGoogle Scholar
  82. Weldon PJ, Dunn BS, McDaniel CA, Werner DI (1990) Lipids in the femoral gland secretions of the green iguana (Iguana iguana). Comp Biochem Physiol B 95:541–543Google Scholar
  83. Weldon PJ, Flachsbarth B, Schulz S (2008) Natural products from the integument of nonavian reptiles. Nat Prod Rep 25:738–756PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • D. Pellitteri-Rosa
    • 1
  • J. Martín
    • 2
  • P. López
    • 2
  • A. Bellati
    • 1
  • R. Sacchi
    • 1
  • M. Fasola
    • 1
  • P. Galeotti
    • 1
  1. 1.DSTA, Dipartimento di Scienze della Terra e dell’AmbienteUniversità di PaviaPaviaItaly
  2. 2.Departamento de Ecología EvolutivaMuseo Nacional de Ciencias Naturales, CSICMadridSpain

Personalised recommendations