, Volume 24, Issue 1, pp 29–34 | Cite as

Conserved male-specific cuticular hydrocarbon patterns in the trap-jaw ant Odontomachus brunneus

  • Adrian A. Smith
  • Whitney Vanderpool
  • Jocelyn G. Millar
  • Lawrence M. Hanks
  • Andrew V. Suarez
Research Paper


Cuticular hydrocarbons have been identified as the source of sex-recognition signals for many insects, but for social insects, specifically ants, cuticular hydrocarbon profiles of males are often ignored. This study reports male-specific cuticular hydrocarbon patterns for the trap-jaw ant Odontomachus brunneus. Analysis of samples from four Florida populations demonstrated that male-specific overabundance of four hydrocarbons is conserved across populations despite population-level divergence of the remainder of the profile. In addition, hydrocarbon patterns unique to adult males were not present on the cuticle of final instar male larvae, indicating that male-specific profiles arise late in development. The pattern of an abundant subset of conserved cuticular hydrocarbons characteristic of males across divergent populations was compared to earlier findings of the conservation of fertility signals of females across these same populations.


Pheromone Sex pheromone Male signal Phenotypic variation 



We thank Walter R. Tschinkel, Joshua R. King, Bill Wills, and Fred Larabee for collection assistance. The Archbold Biological Station, the Pine Jog Environmental Education Center, and Seminole County provided access and permission to collect at our field sites. We thank two anonymous reviewers for their helpful comments.

Supplementary material

49_2013_143_MOESM1_ESM.pdf (393 kb)
Supplementary material 1 (PDF 393 kb)
49_2013_143_MOESM2_ESM.pdf (94 kb)
Supplementary material 2 (PDF 93 kb)


  1. Antonialli WF, Lima SM, Andrade LHC, Suarez YR (2007) Comparative study of the cuticular hydrocarbons in queens, workers and males of Ectatomma vizottoi (Hymenoptera, Formicidae) by Fourier transform-infrared photoacoustic spectroscopy. Genet Mol Res 6:492–499PubMedGoogle Scholar
  2. Beibl J, D’Ettorre P, Heinze J (2007) Cuticular profiles and mating preference in a slave-making ant. Insect Soc 54:174–182CrossRefGoogle Scholar
  3. Buser HR, Arn H, Guerin P, Rauscher S (1983) Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 55:818–822CrossRefGoogle Scholar
  4. Chernenko A, Holman L, Helantera H, Sundstrom L (2012) Cuticular chemistry of males and females in the ant Formica fusca. J Chem Ecol 38:1474–1482PubMedCrossRefGoogle Scholar
  5. Cremer S, Sledge MF, Heinze J (2002) Chemical mimicry—male ants disguised by the queen’s bouquet. Nature 419:897PubMedCrossRefGoogle Scholar
  6. Cremer S, D’Ettorre P, Drijfhout FP, Sledge MF, Turillazzi S, Heinze J (2008) Imperfect chemical female mimicry in males of the ant Cardiocondyla obscurior. Naturwissenschaften 95:1101–1105PubMedCrossRefGoogle Scholar
  7. Cuvillier-Hot V, Cobb M, Malosse C, Peeters C (2001) Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J Insect Physiol 47:485–493PubMedCrossRefGoogle Scholar
  8. Deyrup M, Cover S (2004) A new species of Odontomachus ant (Hymenoptera : Formicidae) from inland ridges of Florida, with a key to Odontomachus of the United States. Fla Entomol 87:136–144CrossRefGoogle Scholar
  9. Endler A, Liebig J, Schmitt T, Parker JE, Jones GR, Schreier P, Hölldobler B (2004) Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc Natl Acad Sci USA 101:2945–2950PubMedCrossRefGoogle Scholar
  10. Endler A, Liebig J, Hölldobler B (2006) Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav Ecol Sociobiol 59:490–499CrossRefGoogle Scholar
  11. Ferveur JF, Cobb M (2010) Behavioral and evolutionary roles of cuticular hydrocarbons in Diptera. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 325–343CrossRefGoogle Scholar
  12. Ginzel MD (2010) Hydrocarbons as contact pheromones of longhorned beetles (Coleoptera: Cerambycidae). In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 375–389CrossRefGoogle Scholar
  13. Greene MJ (2010) Cuticular hydrocarbon cues in the formation and maintenance of insect social groups. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 244–253CrossRefGoogle Scholar
  14. Hojo MK, Wada-Katsumata A, Akino T, Yamaguchi S, Ozaki M, Yamaoka R (2009) Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae). Proc Roy Soc B 276:551–558CrossRefGoogle Scholar
  15. Holman L, Lanfear R, D’ Ettorre P (2013) The evolution of queen pheromones in the ant genus Lasius. J Evol Biol 26:1549–1558PubMedCrossRefGoogle Scholar
  16. Johnson CA, Sundstrom L (2012) Cuticular chemistry of two social forms in a facultatively polygyne ant (Hymenoptera: formicidae: Formica truncorum). Ann Zool Fenn 49:1–17CrossRefGoogle Scholar
  17. Lacaille F, Hiroi M, Twele R, Inoshita T, Umemoto D, Maniere G, Marion-Poll F, Ozaki M, Francke W, Cobb M, Everaerts C, Tanimura T, Ferveur JF (2007) An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS ONE 2:e661PubMedCentralPubMedCrossRefGoogle Scholar
  18. Liebig J (2010) Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 254–281CrossRefGoogle Scholar
  19. Martin S, Drijfhout F (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161PubMedCrossRefGoogle Scholar
  20. Olaniran OA, Sudhakar AVS, Drijfhout FP, Dublon IAN, Hall DR, Hamilton JGC, Kirk DJK (2013) A male-predominant cuticular hydrocarbon, 7-methyltricosane, is used as a contact pheromone in the western flower thrips Frankliniella occidentalis. J Chem Ecol 39:559–568PubMedCrossRefGoogle Scholar
  21. Ratnieks FLW, Foster KR, Wenseleers T (2006) Conflict resolution in insect societies. Annu Rev Entomol 51:581–608PubMedCrossRefGoogle Scholar
  22. Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  23. Smith AA, Millar JG, Hanks LM, Suarez AV (2012) Experimental evidence that workers recognize reproductives through cuticular hydrocarbons in the ant Odontomachus brunneus. Behav Ecol Sociobiol 66:1267–1276CrossRefGoogle Scholar
  24. Smith AA, Millar JG, Hanks LM, Suarez AV (2013) A conserved fertility signal despite population variation in the cuticular chemical profile of the trap-jaw ant Odontomachus brunneus. J Exp Biol 216:3917–3924PubMedCrossRefGoogle Scholar
  25. Tregenza T, Wedell N (1997) Definitive evidence for cuticular pheromones in a cricket. Anim Behav 54:979–984PubMedCrossRefGoogle Scholar
  26. van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 222–243CrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Adrian A. Smith
    • 1
  • Whitney Vanderpool
    • 2
  • Jocelyn G. Millar
    • 3
  • Lawrence M. Hanks
    • 1
  • Andrew V. Suarez
    • 1
    • 4
  1. 1.Department of EntomologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of EntomologyUniversity of CaliforniaRiversideUSA
  4. 4.Department of Animal BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations