Chemoecology

, Volume 23, Issue 3, pp 165–179 | Cite as

Characterization of bioactive plant ellagitannins by chromatographic, spectroscopic and mass spectrometric methods

  • Johanna Moilanen
  • Jari Sinkkonen
  • Juha-Pekka Salminen
Research Paper

Abstract

Ellagitannins are widely distributed plant polyphenols showing potent anti-herbivore activities, but rather complex chemical structures. Here we show how ellagitannins with different structures can be efficiently characterized from plant extracts by utilizing the information obtained from four universal methods used for ellagitannin analysis: Sephadex LH-20 gel chromatography, high-performance liquid chromatography, ultraviolet spectroscopy, and mass spectrometry. We show that by combining the information obtained from the ellagitannins’ chromatographic elution order, specific shapes of the ultraviolet spectra, molecular masses and characteristic mass spectral fragmentations, it is possible to classify these polyphenols into different ellagitannin sub-groups, and even characterize the structures within the sub-groups. These findings aid in the fast screening of complex plant samples for their ellagitannin composition without having to isolate compounds for individual characterization.

Keywords

Polyphenol Hydrolyzable tannin Structure elucidation 

Supplementary material

49_2013_132_MOESM1_ESM.pdf (588 kb)
Supplementary material 1 (PDF 589 kb)

References

  1. Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552CrossRefGoogle Scholar
  2. Asquith TN, Butler LG (1986) Interactions of condensed tannins with selected proteins. Phytochemistry 25:1591–1593CrossRefGoogle Scholar
  3. Barbehenn RV, Jones CP, Hagerman AE, Karonen M, Salminen J-P (2006a) Ellagitannins have greater oxidative activities than condensed tannins or galloyl glucoses at high pH: potential impact on caterpillars. J Chem Ecol 32:2253–2267PubMedCrossRefGoogle Scholar
  4. Barbehenn RV, Jones CP, Karonen M, Salminen J-P (2006b) Tannin composition affects the oxidative activities of tree leaves. J Chem Ecol 32:2235–2251PubMedCrossRefGoogle Scholar
  5. Barbehenn RV, Weir Q, Salminen J-P (2008) Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. J Chem Ecol 34:748–756PubMedCrossRefGoogle Scholar
  6. Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen J-P (2009) Hydrolysable tannins as “quantitative defenses”: limited impact against Lymantria dispar caterpillars on hybrid poplar. J Insect Physiol 55:297–304PubMedCrossRefGoogle Scholar
  7. Clausen TP, Provenza FD, Burritt EA, Reichardt PB, Bryant JP (1990) Ecological implications of condensed tannin structure: a case study. J Chem Ecol 16:2381–2392CrossRefGoogle Scholar
  8. Doig AJ, Williams DH, Oelrichs PB, Baczynskyj L (1990) Isolation and structure elucidation of punicalagin, a toxic hydrolysable tannin, from Terminalia oblongata. J Chem Soc Perkin Trans 1:2317–2321Google Scholar
  9. Friedman M, Jürgens HS (2000) Effect of pH on the stability of plant phenolic compounds. J Agric Food Chem 48:2101–2110PubMedCrossRefGoogle Scholar
  10. Gao H, Huang Y-N, Xu P-Y, Kawabata J (2007) Inhibitory effect on α-glucosidase by the fruits of Terminalia chebula Retz. Food Chem 105:628–634CrossRefGoogle Scholar
  11. Gross GG (2009) Biosynthesis of ellagitannins: old ideas and new solutions. In: Quideau S (ed) Chemistry and biology of ellagitannins. An underestimated class of bioactive plant polyphenols. World Scientific, Singapore, pp 94–118CrossRefGoogle Scholar
  12. Gross EM, Brune A, Walenciak O (2008) Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: potential effects on the fate of ingested tannins. J Insect Physiol 54:462–471PubMedCrossRefGoogle Scholar
  13. Haddock EA, Gupta RK, Al-Shafi SMK, Layden K, Haslam E, Magnolato D (1982) The metabolism of gallic acid and hexahydroxydiphenic acid in plants: biogenetic and molecular taxonomic considerations. Phytochemistry 21:1049–1062CrossRefGoogle Scholar
  14. Hagerman AE (2012) The tannin handbook. http://www.users.muohio.edu/hagermae/. Accessed 4 December 2012
  15. Hagerman AE, Butler LG (1981) The specificity of proanthocyanidin-protein interactions. J Biol Chem 256:4494–4497PubMedGoogle Scholar
  16. Hatano T, Yasuhara T, Matsuda M, Yazaka K, Yoshida T, Okuda T (1990) Oenothein B, a dimeric, hydrolysable tannin with macrocyclic structure, and accompanying tannins from Oenothera erythrosepala. J Chem Soc Perkin Trans I 10:2735–2743CrossRefGoogle Scholar
  17. Hofmann T, Glabasnia A, Schwartz B, Wisman KN, Gangwer KA, Hagerman AE (2006) Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose, castalagin, and grandinin. J Agric Food Chem 54:9503–9509PubMedCrossRefGoogle Scholar
  18. Ito H, Yamaguchi K, Kim T-H, Khennouf S, Gharzouli K, Yoshida T (2002) Dimeric and trimeric hydrolysable tannins from Quercus coccifera and Quercus suber. J Nat Prod 65:339–345PubMedCrossRefGoogle Scholar
  19. Johnson KS, Barbehenn RV (2000) Oxygen levels in the gut lumens of herbivorous insects. J Insect Physiol 46:897–903PubMedCrossRefGoogle Scholar
  20. Karonen M, Parker J, Agrawal A, Salminen J-P (2010) First evidence of hexameric and heptameric ellagitannins in plants detected by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 24:3151–3156PubMedCrossRefGoogle Scholar
  21. Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649PubMedCrossRefGoogle Scholar
  22. Kilkowski WJ, Gross GG (1999) Color reaction of hydrolysable tannins with Bradford reagent, Coomassie brilliant blue. Phytochemistry 51:363–366CrossRefGoogle Scholar
  23. Moilanen J, Salminen J-P (2008) Ecologically neglected tannins and their biologically relevant activity: chemical structures of plant ellagitannins reveal their in vitro oxidative activity at high pH. Chemoecology 18:73–83CrossRefGoogle Scholar
  24. Mole S, Rogler JC, Butler LG (1993) Growth reduction by dietary tannins: different effects due to different tannins. Biochem Syst Ecol 21:667–677CrossRefGoogle Scholar
  25. Mueller-Harvey I (2001) Analysis of hydrolysable tannins. Anim Feed Sci Technol 91:3–20CrossRefGoogle Scholar
  26. Niemetz R, Gross G (2005) Enzymology of gallotannins and ellagitannin biosynthesis. Phytochemistry 66:2001–2011PubMedCrossRefGoogle Scholar
  27. Okuda T, Yoshida T, Hatano T (1989) New methods of analyzing tannins. J Nat Prod 52:1–31CrossRefGoogle Scholar
  28. Okuda T, Yoshida T, Hatano T (1993) Classification of oligomeric hydrolysable tannins and specificity of their occurrence in plants. Phytochemistry 32:507–521CrossRefGoogle Scholar
  29. Okuda T, Yoshida T, Hatano T (2000) Correlation of oxidative transformations of hydrolysable tannins and plant evolution. Phytochemistry 55:513–529PubMedCrossRefGoogle Scholar
  30. Okuda T, Yoshida T, Hatano T, ITO H (2009) Ellagitannins renewed the concept of tannins. In: Quideau S (ed) Chemistry and biology of ellagitannins. An underestimated class of bioactive plant polyphenols. World Scientific, Singapore, pp 1–55CrossRefGoogle Scholar
  31. Pfundstein B, El Desouky SK, Hull WE, Haubner R, Erben G, Owen R (2010) Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): characterization, quantitation and determination of antioxidant capacities. Phytochemistry 71:1132–1148PubMedCrossRefGoogle Scholar
  32. Quideau S, Jourdes M, Saucier C, Glories Y, Pardon P, Baudry C (2003) DNA topoisomerase inhibitor acutissimin A and other flavano-ellagitannins in red wine. Angew Chem Int Ed 42:6012–6014CrossRefGoogle Scholar
  33. Quideau S, Jourdes M, Lefeuvre D, Montaudon D, Saucier C, Glories Y, Pardon P, Pourquier P (2005) The chemistry of wine polyphenolic C-glycosidic ellagitannins targeting human topoisomerase II. Chem Eur J 11:6503–6513PubMedCrossRefGoogle Scholar
  34. Salminen J-P, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338CrossRefGoogle Scholar
  35. Salminen J-P, Lempa K (2002) Effects of hydrolysable tannins on an herbivorous insect: fate of individual tannins in insect digestive tract. Chemoecology 12:203–211CrossRefGoogle Scholar
  36. Salminen J-P, Ossipov V, Haukioja E, Pihlaja K (2001) Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens. Phytochemistry 57:15–22PubMedCrossRefGoogle Scholar
  37. Salminen J-P, Roslin T, Karonen M, Sinkkonen J, Pihlaja K, Pulkkinen P (2004) Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides and proanthocyanidins in oak leaves. J Chem Ecol 30:1693–1711PubMedCrossRefGoogle Scholar
  38. Salminen J-P, Karonen M, Sinkkonen J (2011) Chemical ecology of tannins: recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chem Eur J 17:2806–2816PubMedCrossRefGoogle Scholar
  39. Scalbert A, Duval L, Peng S, Monties B, Du Penhoat C (1990) Polyphenols of Quercus robur L. II. Preparative isolation by low-pressure and high-pressure liquid chromatography of heartwood ellagitannins. J Chromatogr 502:107–119CrossRefGoogle Scholar
  40. Silva O, Gomes ET, Wolfender J-L, Marston A, Hostettmann K (2000) Application of high performance liquid chromatography coupled with ultraviolet spectroscopy and electrospray mass spectrometry to the characterisation of ellagitannins from Terminalia macroptera roots. Pharm Res 17:1396–1401PubMedCrossRefGoogle Scholar
  41. Yarnes CT, Boecklen WJ, Tuominen K, Salminen J-P (2006) Defining phytochemical phenotypes: size and shape analysis of phenolic compounds in oaks (Fagaceae, Quercus) of the Chihuahuan desert. Can J Bot 84:1233–1248CrossRefGoogle Scholar
  42. Yarnes CT, Boecklen WJ, Salminen J-P (2008a) No simple sum: seasonal variation in tannin phenotypes and leaf-miners in hybrid oaks. Chemoecology 18:39–51CrossRefGoogle Scholar
  43. Yarnes CT, Boecklen WJ, Tuominen K, Salminen J-P (2008b) Hybridization affects seasonal variation of phytochemical phenotypes in an oak hybrid complex (Quercus gambelii × Quercus grisea). Int J Plant Sci 169:567–578CrossRefGoogle Scholar
  44. Yoshida T, Ohbayashi H, Ishihara K, Ohwashi W, Haba K, Okano Y, Shingu T, Okuda T (1991a) Tannins and related polyphenols of Melastomataceous plants. I. Hydrolyzable tannins from Tibouchina semidecandra COGN. Chem Pharm Bull 39:2233–2240CrossRefGoogle Scholar
  45. Yoshida T, Chou T, Matsuda M, Yasuhara T, Yazaki K, Hatano T, Nitta A, Okuda T (1991b) Woodfordin D and oenothein A, trimeric hydrolysable tannins of macro-ring structure with antitumor activity. Chem Pharm Bull 39:1157–1162PubMedCrossRefGoogle Scholar
  46. Yoshida T, Chou T, Shingu T, Okuda T (1995) Oenotheins D, F and G, hydrolysable tannin dimers from Oenothera laciniata. Phytochemistry 40:555–561CrossRefGoogle Scholar
  47. Yoshida T, Ito H, Hipolito IJ (2005) Pentameric ellagitannin oligomers in melastomataceous plants—chemotaxonomic significance. Phytochemistry 66:1972–1983PubMedCrossRefGoogle Scholar
  48. Yoshida T, Hatano T, Ito H, Okuda T (2009) Structural diversity and antimicrobial activities of ellagitannins. In: Quideau S (ed) Chemistry and biology of ellagitannins. An underestimated class of bioactive plant polyphenols. World Scientific, Singapore, pp 55–93CrossRefGoogle Scholar
  49. Yoshida T, Amakura Y, Yoshimura M (2010) Structural features and biological properties of ellagitannins in some plant families of the order Myrtales. Int J Mol Sci 11:79–106PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Johanna Moilanen
    • 1
  • Jari Sinkkonen
    • 1
  • Juha-Pekka Salminen
    • 1
  1. 1.Laboratory of Organic Chemistry and Chemical Biology, Department of ChemistryUniversity of TurkuTurkuFinland

Personalised recommendations