Advertisement

Chemoecology

, Volume 22, Issue 4, pp 269–272 | Cite as

Selective sequestration of cardenolide isomers by two species of Danaus butterflies (Lepidoptera: Nymphalidae: Danainae)

  • Dietrich Mebs
  • Moritz G. Wagner
  • Stefan W. Toennes
  • Cora Wunder
  • Michael Boppré
Short Communication

Abstract

Several species of milkweed butterflies (Danaini) are known to sequester cardenolides from their milkweed host plants. In adults of Danaus plexippus and D. gilippus, jointly raised on Asclepias curassavica (Asclepiadaceae), two host-plant cardenolides (calotropin and calactin) were found in significantly different ratios: in D. plexippus and the plant, they occurred in roughly equal ratios, but in D. gilippus, calotropin had a 10–12 times lower concentration, suggesting a selective sequestration of calactin. The two Danaus species belong to different subgenera and the results may be relevant to a better understanding of the evolution of cardenolide sequestration in Danaini.

Keywords

Cardenolides Sequestration Selective storage Lepidoptera Danaini Danaus plexippus Danaus gilippus Asclepias curassavica 

Notes

Acknowledgments

Michael Boppré is grateful to Costa Rica’s Ministerio del Ambiente y Energía y Telecomunicación (MINAET) for granting him a Research Permit and to “El Bosque Nuevo” for their kind hospitality and assistance.

References

  1. Aardema ML, Zhen Y, Andolfatto P (2012) The evolution of cardenolide-resistant forms of Na+,K+-ATPase in Danainae butterflies. Mol Ecol 21:340–349PubMedCrossRefGoogle Scholar
  2. Ackery PR, Vane-Wright RI (1984) Milkweed butterflies, their cladistics and biology. British Museum (Natural History), LondonGoogle Scholar
  3. Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45PubMedCrossRefGoogle Scholar
  4. Brower LP (1984) Chemical defence in butterflies. In: Vane-Wright RI, Ackery PR (eds) The Biology of Butterflies. British Museum (Natural History), London, pp 109–134 (Symp R Entomol Soc 11)Google Scholar
  5. Brower LP, van Zandt Brower J (1964) Birds, butterflies and plant poisons: a study in ecological chemistry. Zoologica 49:137–159Google Scholar
  6. Brower LP, Edmunds M, Moffit CM (1975) Cardenolide content and palatability of a population of Danaus chrysippus butterflies from West Africa. J Entomol 49:183–196Google Scholar
  7. Brower LP, Seiber JN, Nelson CJ, Lynch SP, Tuskes PM (1982) Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus reared on the milkweed, Asclepias eriocarpa in California. J Chem Ecol 8:579–633CrossRefGoogle Scholar
  8. Brower AVZ, Wahlberg N, Ogawa JR, Boppré M, Vane-Wright RI (2010) Phylogenetic relationships among genera of danaine butterflies (Lepidoptera: Nymphalidae) as implied by morphology and DNA sequences. System Biodiv 8:75–89CrossRefGoogle Scholar
  9. Cohen JA (1985) Differences and similarities in cardenolide contents of queen and monarch butterflies in Florida and their ecological and evolutionary implications. J Chem Ecol 11:85–104CrossRefGoogle Scholar
  10. Dobler S, Petschenka G, Pankoke H (2011) Coping with toxic plant compounds—the insects’ perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604PubMedCrossRefGoogle Scholar
  11. Frick C, Wink M (1995) Uptake and sequestration of ouabain and other cardiac glycosides in Danaus plexippus (Lepidoptera: Danaidae): evidence for a carrier mediated process. J Chem Ecol 21:557–576CrossRefGoogle Scholar
  12. Groeneveld HW, Steijl H, van den Berg B, Elings JC (1990) Rapid, quantitative HPLC analysis of Asclepias fruticosa L. and Danaus plexippus L. cardenolides. J Chem Ecol 16:3373–3382CrossRefGoogle Scholar
  13. Holzinger F, Wink M (1996) Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): role of an amino acid substitution in the ouabain binding site of Na+,K+-ATPase. J Chem Ecol 22:1921–1937CrossRefGoogle Scholar
  14. Holzinger F, Frick C, Wink M (1992) Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314:477–480PubMedCrossRefGoogle Scholar
  15. Marty MA, Krieger RI (1984) Metabolism of uscharidin, a milkweed cardenolide, by tissue homogenates of monarch butterfly larvae, Danaus plexippus. J Chem Ecol 10:945–956CrossRefGoogle Scholar
  16. Mebs D, Zehner R, Schneider M (2000) Molecular studies on the ouabain binding site of the Na+,K+-ATPase in milkweed butterflies. Chemoecology 10:201–203CrossRefGoogle Scholar
  17. Mebs D, Reuss E, Schneider M (2005) Studies on the cardenolide sequestration in African milkweed butterflies (Danaidae). Toxicon 45:581–584PubMedCrossRefGoogle Scholar
  18. Moranz R, Brower LP (1998) Geographical and temporal variation of cardenolide-based chemical defenses of queen butterfly (Danaus gilippus) in northern Florida. J Chem Ecol 24:905–932CrossRefGoogle Scholar
  19. Nelson CJ (1993a) A model for cardenolide and cardenolide glycoside storage by the monarch butterfly. In: Malcolm SB, Zalucki MP (eds) Biology and conservation of the monarch butterfly. Natural History Museum of Los Angeles County, Los Angeles, pp 83–90Google Scholar
  20. Nelson CJ (1993b) Sequestration and storage of cardenolides and cardenolide glycosides by Danaus plexippus plexippus and D. chrysippus petilea when reared on Asclepias fruticosa: with a review of some factors that influence sequestration. In: Malcolm SB, Zalucki MP (eds) Biology and conservation of the monarch butterfly. Natural History Museum of Los Angeles County, Los Angeles, pp 91–105Google Scholar
  21. Parsons JA (1965) A digitalis-like toxin in the monarch butterfly, Danaus plexippus L. J Physiol 178:290–304PubMedGoogle Scholar
  22. Petschenka G, Dobler S (2009) Target-site sensitivity in a specialized herbivore towards major toxic compounds of its host plant: the Na+K+-ATPase of the oleander hawk moth (Daphnis nerii) is highly susceptible to cardenolides. Chemoecology 19:235–239CrossRefGoogle Scholar
  23. Reichstein T, von Euw J, Parsons JA, Rothschild M (1968) Heart poisons in the monarch butterfly. Science 161:861–866PubMedCrossRefGoogle Scholar
  24. Roeske CN, Seiber JS, Brower LP, Moffitt CM (1976) Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus). Recent Adv Phytochem 10:93–167Google Scholar
  25. Rothschild M, Reichstein T, Euw JV (1973) Danaus chrysippus aegyptius and D. chrysippus alcippus reared on Asclepias curassavica. Proc R Entomol Soc London (C) 37:37–38Google Scholar
  26. Rothschild M, Euw JV, Reichstein T, Smith DAS (1975) Cardenolide storage in Danaus chrysippus (L.) with additional notes on D. plexippus. Proc R Soc London (B) 190:1–31CrossRefGoogle Scholar
  27. Seiber JN, Tuskes PM, Brower LP, Roeske CN (1980) Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L.). J Chem Ecol 6:321–329CrossRefGoogle Scholar
  28. Zhan S, Merlin C, Boore JL, Reppert SM (2011) The monarch butterfly genome yields insight into long-distance migration. Cell 147:1171–1185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Dietrich Mebs
    • 1
  • Moritz G. Wagner
    • 1
  • Stefan W. Toennes
    • 1
  • Cora Wunder
    • 1
  • Michael Boppré
    • 2
  1. 1.Institute of Legal MedicineUniversity of FrankfurtFrankfurtGermany
  2. 2.Institute of Forest ZoologyUniversity of FreiburgFreiburgGermany

Personalised recommendations