, Volume 21, Issue 3, pp 113–122 | Cite as

The semiochemically mediated interactions between bacteria and insects

  • Pascal D. Leroy
  • Ahmed Sabri
  • François J. Verheggen
  • Frédéric Francis
  • Philippe Thonart
  • Eric Haubruge
Review Paper


In natural environment, semiochemicals are involved in many interactions between the different trophic levels involving insects, plants and hosts for parasitoids or prey for predators. These volatile compounds act as messengers within or between insect species, inducing particular behaviours, such as the localisation of a source of food, the orientation to an adequate oviposition site, the selection of a suitable breeding site and the localisation of hosts or prey. In this sense, bacteria have been shown to play an important role in the production of volatile compounds which ones act as semiochemicals. This review, focusing on the semiochemically mediated interactions between bacteria and insects, highlights that bacterial semiochemicals act as important messengers for insects. Indeed, in most of the studies reported here, insects respond to specific volatiles emitted by specific bacteria hosted by the insect itself (gut, mouthparts, etc.) or present in the natural environment where the insect evolves. Particularly, bacteria from the families Enterobacteriaceae, Pseudomonaceae and Bacillaceae are involved in many interactions with insects. Because semiochemicals naturally produced by bacteria could be a very interesting option for pest management, advances in this field are discussed in the context of biological control against insect pests.


Semiochemically mediated interactions Bacterial volatiles Semiochemicals Behaviours Insects Pests Biological control 


  1. Arnaud L, Detrain C, Gaspar C, Haubruge E (2003) Insectes et communication. J Ing 87:25–28Google Scholar
  2. Barke J, Seipke RF, Grüschow S et al (2010) A mixed community of actinomycetes produces multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109PubMedCrossRefGoogle Scholar
  3. Baumann L, Thao ML, Hess JM, Johnson MW, Baumann P (2002) The genetic properties of the primary endosymbionts of mealybugs differ from those of other endosymbionts of plant sap-sucking insects. Appl Environ Microbiol 68:3198–3205PubMedCrossRefGoogle Scholar
  4. Brachmann AO, Forst S, Furgani GM, Fodor A, Bode HB (2006) Xenofuranones A and B: phenylpyruvate dimers from Xenorhabdus szentirmaii. J Nat Prod 69:1830–1832PubMedCrossRefGoogle Scholar
  5. de Maagd R, Weemen-Hendriks M, Molthoff JW, Naimov S (2003) Activity of wild-type and hybrid Bacillus thuringiensis delta-endotoxins against Agrotis ipsilon. Arch Microbiol 179:363–367PubMedGoogle Scholar
  6. DeMilo AB, Lee CJ, Moreno DS, Martinez AJ (1996) Identification of volatiles derived from Citrobacter freundii fermentation of a trypticase soy broth. J Agric Food Chem 44:607–612CrossRefGoogle Scholar
  7. Dickschat JS, Reichenbach H, Wagner-Döbler I, Schulz S (2005) Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. Eur J Org Chem 19:4141–4153CrossRefGoogle Scholar
  8. Dillon RJ, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153:503–509PubMedCrossRefGoogle Scholar
  9. Dillon RJ, Vennard CT, Charnley AK (2000) Exploitation of gut bacteria in the locust. Nature 403:851PubMedCrossRefGoogle Scholar
  10. Douglas AE (2006) Phloem-sap feeding by animals: problems and solutions. J Exp Bot 57:747–754PubMedCrossRefGoogle Scholar
  11. Drew RAI (1987) Behavioural strategies of fruit flies of the genus Dacus (Diptera: Tephritidae) significant in mating and host–plant relationships. Bull Entomol Res 77:73–81CrossRefGoogle Scholar
  12. Drew RAI, Fay HAC (1988) Comparison of the roles of ammonia and bacteria in the attraction of Dacus tryoni (Froggatt) (Queensland fruit fly) to proteinaceous suspensions. J Plant Prot Trop 5:127–130Google Scholar
  13. Epsky ND, Heath RR, Dueben BD, Lauzon CR, Proveaux AT, MacCollum GB (1998) Attraction of 3-methylbutanol and ammonia identified from Enterobacter agglomerans to Anastrepha suspensa. J Chem Ecol 24:1867–1880CrossRefGoogle Scholar
  14. Ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:36–351CrossRefGoogle Scholar
  15. Fredrickson JK, Zachara JM, Balkwill et al (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington state. Appl Environ Microbiol 70: 4230–4241Google Scholar
  16. Grenier AM, Duport G, Pages S, Condemine G, Rahbe Y (2006) The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid. Appl Environ Microbiol 72:1956–1965PubMedCrossRefGoogle Scholar
  17. Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746PubMedCrossRefGoogle Scholar
  18. Harada H, Ishikawa H (1997) Experimental pathogenicity of Erwinia aphidicola to pea aphid, Acyrthosiphon pisum. J Gen Appl Microbiol 43:363–367PubMedCrossRefGoogle Scholar
  19. Harada H, Oyaizu H, Kosako Y, Ishikawa H (1997) Erwinia aphidicola, a new species isolated from pea aphid, Acyrthosiphon pisum. J Gen Appl Microbiol 43:349–354PubMedCrossRefGoogle Scholar
  20. Hasselschwert D, Rockett CL (1988) Bacteria as oviposition attractants for Aedes aegypti (Diptera: Culicidae). Great Lakes Entomol 21:163–168Google Scholar
  21. Herbert EE, Goodrich-Blair H (2007) Friend and foe: the two faces of Xenorhabdus nematophila. Nat Rev Microbiol 5:634–646PubMedCrossRefGoogle Scholar
  22. Huang J, Miller JR, Chen S et al (2006) Anopheles gambiae (Diptera: Culicidae) oviposition in response to agarose media and cultured bacterial volatiles. J Med Entomol 43:498–504PubMedCrossRefGoogle Scholar
  23. Ikeshoji T, Saito K, Yano A (1975) Bacterial production of the ovipositional attractants for mosquitoes on fatty acid substrates. Appl Entomol Zool 10:302–308Google Scholar
  24. Jang EB, Nishijima KA (1990) Identification and attractancy of bacteria associated with Dacus dorsalis (Diptera: Tephritidae). Env Entomol 19:1726–1751Google Scholar
  25. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535PubMedCrossRefGoogle Scholar
  26. Lam K, Babor D, Duthie B, Babor EM, Moore M, Gries G (2007) Proliferating bacterial symbionts on house fly eggs affect oviposition behaviour of adult flies. Anim Behav 74:81–92CrossRefGoogle Scholar
  27. Lauzon CR, Sjogren RE, Wright SE, Prokopy RJ (1998) Attraction of Rhagoletis pomonella (Diptera: Tephritidae) flies to odor of bacteria: apparent confinement to specialized members of Enterobacteriaceae. Environ Entomol 27:853–857Google Scholar
  28. Lecadet MM, Frachon E, DuManoir VC, Ripouteau H, Hamon S, Laurent P, Thiery I (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672PubMedCrossRefGoogle Scholar
  29. Lee CJ, DeMilo AB, Moreno DS, Martinez AJ (1995) Analyses of the volatile components of a bacterial fermentation that is attractive to the Mexican fruit fly, Anastrepha ludens. J Agric Food Chem 43:1348–1351CrossRefGoogle Scholar
  30. Leroy P, Wathelet B, Sabri A et al (2011) Aphid–host plant interactions: does aphid honeydew exactly reflect the host plant amino acid composition? Arthropod Plant Interact 5:1–7Google Scholar
  31. MacCollum GB, Lauzon CR, Weires RW, Rutkowski AA (1992) Attraction of adult apple maggot (Diptera: Tephritidae) to microbial isolates. J Econ Entomol 85:83–87Google Scholar
  32. Martinez AJ, Robacker DC, Garcia JA, Esau KL (1994) Laboratory and field olfactory attraction of the Mexican fruit fly (Diptera: Tephritidae) to metabolites of bacterial species. Fla Entomol 77:117–126CrossRefGoogle Scholar
  33. Maw MG (1970) Capric acid as a larvicide and an oviposition stimulant for mosquitoes. Nature 227:1154–1155PubMedCrossRefGoogle Scholar
  34. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267–267Google Scholar
  35. Nolte DJ, Eggers SH, May IR (1973) A locust pheromone: locustol. J Insect Physiol 19:1547–1554CrossRefGoogle Scholar
  36. Noorman N (2001) Pheromones of the housefly: a chemical and behavioural study. PhD Thesis, University of Groningen, The Netherlands, 127 ppGoogle Scholar
  37. Nordlund DA, Lewis WJ (1976) Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J Chem Ecol 2:211–220CrossRefGoogle Scholar
  38. Oh DC, Poulsen M, Currie CR, Clardy J (2009a) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393PubMedCrossRefGoogle Scholar
  39. Oh DC, Scott JJ, Currie CR, Clardy J (2009b) Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org Lett 11:633–636PubMedCrossRefGoogle Scholar
  40. Oh DC, Poulsen M, Currie CR, Clardy J (2011) Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp. Org Lett 13:752–755PubMedCrossRefGoogle Scholar
  41. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807PubMedCrossRefGoogle Scholar
  42. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci 102:12795–12800PubMedCrossRefGoogle Scholar
  43. Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc B 275:293–299PubMedCrossRefGoogle Scholar
  44. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Ann Rev Entomol 55:247–266CrossRefGoogle Scholar
  45. Pavlovich SG, Rockett CL (2000) Color, bacteria, and mosquito eggs as ovipositional attractants for Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Great Lakes Entomol 33:141–153Google Scholar
  46. Piel J, Höfer I, Hui D (2004) Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J Bact 186:1280–1286PubMedCrossRefGoogle Scholar
  47. Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. PNAS 105:9262–9267PubMedCrossRefGoogle Scholar
  48. Poonam S, Paily KP, Balaraman K (2002) Oviposition attractancy of bacterial culture filtrates response of Culex quinquefasciatus. Mem Inst Oswaldo Cruz 97:359–362PubMedCrossRefGoogle Scholar
  49. Riba G, Silvy C (1989) Combattre les ravageurs des cultures enjeux et perspectives. INRA, ParisGoogle Scholar
  50. Robacker DC, Barlet RJ (1997) Chemicals attractive to Mexican fruit fly from Klebsiella pneumoniae and Citrobacter freundii cultures sampled by solid-phase microextraction. J Chem Ecol 23:2897–2915CrossRefGoogle Scholar
  51. Robacker DC, Flath RA (1995) Attractants from Staphylococcus aureus cultures for the Mexican fruit fly, Anastrepha ludens. J Chem Ecol 21:1861–1874CrossRefGoogle Scholar
  52. Robacker DC, Garcia JA (1993) Effects of age, time of day, feeding history, and gamma irradiation on attraction of Mexican fruit flies (Diptera: Tephritidae), to bacterial odor in laboratory experiments. Environ Entomol 22:1367–1374Google Scholar
  53. Robacker DC, Lauzon CR (2002) Purine metabolizing capability of Enterobacter agglomerans affects volatiles production and attractiveness to Mexican fruit fly. J Chem Ecol 28:1549–1563PubMedCrossRefGoogle Scholar
  54. Robacker DC, Moreno DS (1995) Protein feeding attenuates attraction of Mexican fruit flies (Diptera: Tephritidae) to volatile bacterial metabolites. Fla Entomol 78:62–69CrossRefGoogle Scholar
  55. Robacker DC, Garcia JA, Martinez AJ, Kaufman MG (1991) Strain of Staphylococcus attractive to laboratory strain Anastrepha ludens (Diptera: Tephritidae). Ann Entomol Soc Am 84:555–559Google Scholar
  56. Robacker DC, Warfield WC, Albach RF (1993) Partial characterization and HPLC isolation of bacteria-produced attractants for the Mexican fruit fly, Anastrepha ludens. J Chem Ecol 19:543–557CrossRefGoogle Scholar
  57. Robacker DC, DeMilo AB, Voaden DJ (1997) Mexican fruit fly attractants: effects of 1-pyrroline and other amines on attractiveness of a mixture of ammonia, methylamine, and putrescine. J Chem Ecol 23:1263–1280CrossRefGoogle Scholar
  58. Robacker DC, Martinez AJ, Garcia JA, Barlet RJ (1998) Volatiles attractive to the Mexican fruit fly (Diptera: Tephritidae) from eleven bacteria taxa. Fla Entomol 81:497–508CrossRefGoogle Scholar
  59. Robacker DC, Lauzon CR, He X (2004) Volatiles production and attractiveness to the Mexican fruit fly of Enterobacter agglomerans isolated from apple maggot and Mexican fruit flies. J Chem Ecol 30:1329–1347PubMedCrossRefGoogle Scholar
  60. Rockett CL (1987) Bacteria as ovipositional attractants for Culex pipiens (Diptera: Culicidae). Great Lakes Entomol 20:151–155Google Scholar
  61. Romero A, Broce A, Zurek L (2006) Role of bacteria in the oviposition behaviour and larval development of stable flies. Med Vet Entomol 20:115–121PubMedCrossRefGoogle Scholar
  62. Sabri A, Leroy P, Haubruge E et al (2010) Isolation, pure culture and characterization of Serratia symbiotica, the R-type of secondary endosymbionts of the black bean aphid Aphis fabae. Int J Syst Evol Microbiol (in press)Google Scholar
  63. Scarborough CL, Ferrari J, Godfray HC (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781PubMedCrossRefGoogle Scholar
  64. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806PubMedGoogle Scholar
  65. Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci USA 108:1955–1960PubMedCrossRefGoogle Scholar
  66. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842PubMedCrossRefGoogle Scholar
  67. Scott JJ, Oh DC, Cetin Yuceer M, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle–fungus mutualism. Science 322:63PubMedCrossRefGoogle Scholar
  68. Thao ML, Baumann P (2004) Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol 70:3401–3406PubMedCrossRefGoogle Scholar
  69. Thibout E, Guillot JF, Auger J (1993) Microorganisms are involved in the production of volatile kairomones affecting the host seeking behaviour of Diadromus pulchellus, a parasitoid of Acrolepiopsis assectella. Physiol Entomol 18:176–182CrossRefGoogle Scholar
  70. Thibout E, Guillot JF, Ferary S, Limouzin P, Auger J (1995) Origin and identification of bacteria which produce kairomones in the frass of Acrolepiopsis assectella (Lep., Hyponomeutoidea). Experientia 51:1073–1075PubMedCrossRefGoogle Scholar
  71. Trexler JD, Apperson CS, Zurek L, Gemeno C, Schal C, Kaufman M, Walker E, Watson DW, Wallace L (2003) Role of bacteria in mediating the oviposition responses of Aedes albopictus (Diptera: Culicidae). J Med Entomol 40:841–848PubMedCrossRefGoogle Scholar
  72. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. PNAS 95:6578–6583PubMedCrossRefGoogle Scholar
  73. Zilkowski BW, Bartelt RJ, Blumberg D, James DG, Weaver DKJ (1999) Identification of host-related volatiles attractive to pineapple beetle Carpophilus humeralis. J Chem Ecol 25:229–252CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Pascal D. Leroy
    • 1
  • Ahmed Sabri
    • 2
  • François J. Verheggen
    • 1
  • Frédéric Francis
    • 1
  • Philippe Thonart
    • 2
  • Eric Haubruge
    • 1
  1. 1.Department of Functional and Evolutionary EntomologyUniversity of Liege, Gembloux Agro-Bio TechGemblouxBelgium
  2. 2.Walloon Center of Industrial BiologyUniversity of Liege, B40Sart-TilmanBelgium

Personalised recommendations