, Volume 20, Issue 3, pp 179–187 | Cite as

Pheromone of the elm bark beetle Scolytus laevis (Coleoptera: Scolytidae): stereoisomers of 4-methyl-3-heptanol reduce interspecific competition

  • Olle Anderbrant
  • Donald S. Matteson
  • C. Rikard Unelius
  • Philip S. Pharazyn
  • Ellen M. Santangelo
  • Fredrik Schlyter
  • Göran Birgersson
Research Paper


Stereoisomers of 4-methyl-3-heptanol (MH) are pheromone components of several Scolytus bark beetles. The elm bark beetle Scolytus laevis (Coleoptera: Scolytidae) has in previous studies been caught in traps baited with commercial MH containing all four stereoisomers, but the lure has been considered a weak attractant. In this study, we addressed the question whether stereospecific responses by S. laevis to stereoisomers of MH might contribute to its niche separation from other sympatric Scolytus species. Using GC–MS, we analyzed extracts of hindguts and abdomens from male and female S. laevis and the sympatric S. triarmatus. We also tested all four MH-stereoisomers individually and in combinations in the field to determine their role for S. laevis. All four stereoisomers were synthesized via a boronic ester method with 1,2-dicyclohexylethanediol as chiral director. In addition, the (3S,4R)-stereoisomer of MH was prepared through enantioselective, lipase-mediated transesterification of a mixture of the four stereoisomers of MH. Females of both species contained small amounts of syn-MH, and males contained trace amounts of anti-MH. The anti stereoisomer (3R,4S)-MH was attractive to male and female S. laevis, whereas the syn stereoisomer (3S,4S)-MH acted as an inhibitor or deterrent and reduced the catch when added to the attractive isomer. The syn isomer is the main aggregation pheromone component of the larger and sympatric S. scolytus and possibly also of S. triarmatus. The avoidance response of S. laevis to the (3S,4S)-stereoisomer may reduce interspecific competition for host trees.


Semiochemical Attractant Chemical analysis Synthesis Scolytus triarmatus Dutch elm disease 



We thank Annika Söderman, Björn Johansson and Fredrik Östrand for assistance during fieldwork, two anonymous reviewers for valuable comments and C. F. Lundströms Stiftelse and The Royal Swedish Academy of Agriculture and Forestry for financial support.


  1. Anderbrant O, Schlyter F (1987a) Ecology of the Dutch elm disease vectors Scolytus laevis and S. scolytus in southern Sweden. J Appl Ecol 24:539–550CrossRefGoogle Scholar
  2. Anderbrant O, Schlyter F (1987b) Differences in morphology and sexual size dimorphism between the Dutch elm disease vectors Scolytus laevis and S. scolytus (Col., Scolytidae). J Appl Entomol 103:378–386CrossRefGoogle Scholar
  3. Atkins PM, O’Callaghan DP, Kirby SG (1981) Scolytus laevis, Chapuis (Col., Scol.) new to Britain. Entomol Gazette 32:280Google Scholar
  4. Bejer B (1979) Elmebarkbillerne og deres rolle i elmesygen. Ugeskrift Jordbrug 1979(15–16):395–398Google Scholar
  5. Bejer-Petersen B, Pedersen KO (1976) Forekomsten av elmebarkbiller omkring den danske-tyske graense. Og noter om arternes gangsystemer. Ugeskrift Agron Hort Forst og Lic 121:889–892Google Scholar
  6. Ben-Yehuda S, Tolasch T, Francke W, Gries R, Gries G, Dunkelblum D, Mendel Z (2002) Aggregation pheromone of the almond bark beetle Scolytus amygdali (Coleoptera: Scolytidae). IOBC wprs Bull 25(9):259–270Google Scholar
  7. Birgersson G, Schlyter F, Löfqvist J, Bergström G (1984) Quantitative variation of pheromone components in the spruce bark beetle Ips typographus from different attack phases. J Chem Ecol 10:1029–1055CrossRefGoogle Scholar
  8. Blight MM, Wadhams LJ, Wenham MJ (1979a) Field attraction of Scolytus scolytus (F.) to the enantiomers of 4-methyl-3-heptanol, the major component of the aggregation pheromone. Forestry 52:83–90CrossRefGoogle Scholar
  9. Blight MM, Wadhams LJ, Wenham MJ (1979b) The stereoisomeric composition of the 4-methyl-3-heptanol produced by Scolytus scolytus and the preparation and biological activity of the four synthetic stereoisomers. Insect Biochem 9:525–533CrossRefGoogle Scholar
  10. Gerken B, Grüne S (1978) Zur biologischen Bedeutung käfereigener Duftstoffe des großen Ulmensplintkäfers, Scolytus scolytus F (Col: Scolytidae). Mitt Dtsch Ges Allg Angew Ent 1:38–41Google Scholar
  11. Grove JF (1983) Biochemical investigations related to Dutch elm disease carried out at the Agricultural Research Council Unit of Invertebrate Chemistry and Physiology, University of Sussex, 1973–1982. In: Burdekin DA (ed) Research on Dutch elm disease in Europe. Forestry Commission Bulletin No. 60. H.M.S.O, London, pp 59–66Google Scholar
  12. Harding S, Ravn HP (1982) Danish records of the three species of elm bark beetles in relation to Dutch elm disease (In Danish with English summary.). Tidskr Planteavl 86:477–495Google Scholar
  13. Hiscox WC, Matteson DS (1996) An efficient preparation of (R*, R*)-1, 2-dicyclohexylethane-1, 2-diol, a superior chiral director for synthesis with boronic esters. J Org Chem 61:8315–8316CrossRefPubMedGoogle Scholar
  14. Hoffmann RW, Ditrich K, Köster G, Stürmer R (1989) Stereoselective synthesis of alcohols XXXI. Stereoselective carbon-carbon bond formation using chiral Z-pentenylboronates. Chem Ber 122:1783–1789CrossRefGoogle Scholar
  15. Kirby SG, Fairhurst CP (1983) The ecology of elm bark beetles in northern Britain. In: Burdekin DA (ed) Research on Dutch elm disease in Europe. Forestry Commission Bulletin No. 60. H.M.S.O, London, pp 29–39Google Scholar
  16. Klimetzek D, Kopp H-P (1983) Scolytid pheromone research in West Germany. In: Burdekin DA (ed) Research on Dutch elm disease in Europe. Forestry Commission Bulletin No. 60. H.M.S.O, London, pp 50–58Google Scholar
  17. Lanier GM, Gore WE, Pearce GT, Peacock JW, Silverstein RM (1977) Response of the European elm bark beetle, Scolytus multistriatus (Coleoptera: Scolytidae), to isomers and components of its pheromone. J Chem Ecol 3:1–8CrossRefGoogle Scholar
  18. Lekander B, Bejer-Petersen B, Kangas E, Bakke A (1977) The distribution of bark beetles in the Nordic countries. Acta Entomol Fenn No. 32Google Scholar
  19. Man HW, Hiscox WC, Matteson DS (1999) A highly enantioselective and diastereoselective synthesis of cyclobutanes via boronic esters. Organic Lett 1:379–382CrossRefGoogle Scholar
  20. Matteson DS, Majumdar D (1983) Homologation of boronic esters to α-chloro boronic esters. Organometallics 2:1529–1535CrossRefGoogle Scholar
  21. Matteson DS, Man HW (1994) Enantioselective capture and retroracemization of 1-bromoalkylboronic esters by an N-propanoyloxazolidinone enolate and iodide ion. J Org Chem 59:5734–5741CrossRefGoogle Scholar
  22. Matteson DS, Sadhu KM, Peterson ML (1986) 99% Chirally selective syntheses via pinanediol boronic esters: Insect pheromones, diols, and an amino alcohol. J Am Chem Soc 108:810–819CrossRefGoogle Scholar
  23. Matteson DS, Singh RP, Schafman B, Yang J (1998) Asymmetric synthesis of serricornin via boronic esters. J Org Chem 63:4466–4469CrossRefGoogle Scholar
  24. Michalski J (1973) Revision of the palearctic species of the genus Scolytus Geoffroy (Coleoptera, Scolytidae). Warszawa, KrakowGoogle Scholar
  25. Mori K (1977) Absolute configuration of (–)-4-methylheptan-3-ol, a pheromone of the smaller European elm bark beetle, as determined by the synthesis of its (3R, 4R)-(+)- and (3S, 4R)-(+)-isomers. Tetrahedron 33:289–294CrossRefGoogle Scholar
  26. Mori K (2007) Significance of chirality in pheromone science. Bioorg Med Chem 15:7505–7523CrossRefPubMedGoogle Scholar
  27. Mori K, Iwasawa H (1980) Preparation of threo-2-amino-3-methylhexanoic acid by enzymatic resolution and their conversion to optically active forms of threo-4-methylheptan-3-ol, a pheromone component of the smaller European elm bark beetle. Tetrahedron 36:2209–2213CrossRefGoogle Scholar
  28. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605CrossRefPubMedGoogle Scholar
  29. Nakagawa N, Mori K (1984) Synthesis of (3S, 4S)-4-methyl-3-heptanol and its (3S, 4R)-isomer employing asymmetric epoxidation coupled with regioselective cleavage of epoxides with trimethylaluminum. Agric Biol Chem 48:2505–2510Google Scholar
  30. Oppolzer W, Dudfield P (1985) Asymmetric acetoxylation of carboxylic esters Preliminary communication. Helv Chim Acta 68:216–219CrossRefGoogle Scholar
  31. Pearce GT, Gore WE, Silverstein RM, Peacock JW, Cuthbert RA, Lanier GN, Simeone JB (1975) Chemical attractants for the smaller European elm bark beetle Scolytus multistriatus (Coleoptera: Scolytidae). J Chem Ecol 1:115–124CrossRefGoogle Scholar
  32. Pfeffer A (1995) Zentral- und westpaläarktische Borken- und Kernkäfer (Coleoptera: Scolytidae, Platypodidae). Pro Entomologia c/o Naturhistorisches Museum, BaselGoogle Scholar
  33. Postner M (1974) Scolytidae, Borkenkäfer. In: Schwenke W (ed) Die Forstschädlinge Europas, vol 2. Paul Parey, Hamburg-Berlin, pp 334–482Google Scholar
  34. Pougny J-R, Sinay P (1982) (3S, 4S)-4-Methylheptan-3-ol, a pheromone component of the smaller European elm bark beetle: synthesis from d-glucose. J Chem Res 1982:186–196Google Scholar
  35. Ružicka J, Koutek B, Streinz L, Šaman D, Lešetick L (1999) A new access to β-methyl substituted secondary alcohols. Application to the synthesis of 4-methylheptan-3-ol. Tetrahedron Asymmetry 10:3521–3528CrossRefGoogle Scholar
  36. Sayo N, Azuma K, Mikami K, Nakai T (1984) Acyclic stereocontrol via asymmetric [2, 3]-Wittig rearrangement with high enantio- and erythro-selectivity and its use in the chiral synthesis of insect pheromones. Tetrahedron Lett 25:565–568CrossRefGoogle Scholar
  37. Schlyter F, Anderbrant O, Lindquist G, Jansson A (1987) Dutch elm disease (Ceratocystis ulmi), elm bark beetles (Scolytus spp.) in Malmö town 1985 - distribution, phenology and practical measures in an integrated control program (In Swedish with English abstract.). Växtskyddsnotiser 51:2–10Google Scholar
  38. Schlyter F, Birgersson G, Byers JA, Bakke A (1992) The aggregation pheromone of Ips duplicatus and its role in competitive interactions with I. typographus (Coleoptera: Scolytidae). Chemoecology 3:103–112CrossRefGoogle Scholar
  39. Steghaus-Kovac S, Maschwitz U, Attygalle AB, Frighetto RTS, Frighetto N, Vostrowsky O, Bestmann HJ (1992) Trail-following responses of Leptogenys diminuta to stereoisomers of 4-methyl-3-heptanol. Experientia 48:690–694CrossRefGoogle Scholar
  40. Tripathy PB, Matteson DS (1990) Asymmetric synthesis of the four stereoisomers of 4-methyl-3-heptanol via boronic esters: Sequential double stereodifferentiation leads to very high purity. Synthesis 1990:200–206CrossRefGoogle Scholar
  41. Unelius CR, Sandell J, Orrenius C (1998) Enantioselective preparation of the stereoisomers of 4-methyl-3-heptanol using Candida antarctica lipase B. Collect Czech Chem Commun 63:525–533CrossRefGoogle Scholar
  42. Vigneron JP, Bloy V (1980) Preparation d’alkyl-4 γ-lactones optiquement actives. Tetrahedron Lett 21:1735–1738CrossRefGoogle Scholar
  43. Vigneron JP, Meric R, Dhaenens M (1980) Preparation des methyl-4 heptanols-3 erythro et threo optiquement purs. Tetrahedron Lett 21:2057–2060CrossRefGoogle Scholar
  44. Vrkocová P, Kalinová B, Valterová I, Koutek B (2003) Analysis of European oak bark beetle (Scolytus intricatus) extracts using hyphenated and chiral chromatography techniques. Talanta 59:107–114CrossRefPubMedGoogle Scholar
  45. Zada A, Ben-Yehuda S, Dunkelblum E, Harel M, Assael F, Mendel Z (2004) Synthesis and biological activity of the four stereoisomers of 4-methyl-3-heptanol: main component of the aggregation pheromone of Scolytus amygdali. J Chem Ecol 30:631–641CrossRefPubMedGoogle Scholar
  46. Zanta F, Battisti A (1989) Notes on the distribution and biology of elm bark beetles in north-eastern Italy (Coleoptera Scolytidae). Gortania Atti Museo Friul Storia Nat 11:189–206Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Olle Anderbrant
    • 1
  • Donald S. Matteson
    • 2
  • C. Rikard Unelius
    • 3
  • Philip S. Pharazyn
    • 2
  • Ellen M. Santangelo
    • 4
  • Fredrik Schlyter
    • 1
    • 6
  • Göran Birgersson
    • 5
    • 6
  1. 1.Department of BiologyLund UniversityLundSweden
  2. 2.Department of ChemistryWashington State UniversityPullmanUSA
  3. 3.School of Natural SciencesLinneus UniversityKalmarSweden
  4. 4.Department of ChemistryRoyal Institute of TechnologyStockholmSweden
  5. 5.Department of Chemical EcologyGöteborg UniversityGöteborgSweden
  6. 6.Chemical Ecology, Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations