, Volume 20, Issue 1, pp 43–48 | Cite as

Detecting pigments from colourful eggshells of extinct birds

  • Branislav Igic
  • David R. Greenwood
  • David J. Palmer
  • Phillip Cassey
  • Brian J. Gill
  • Tomas Grim
  • Patricia L. R. Brennan
  • Suzanne M. Bassett
  • Phil F. Battley
  • Mark E. Hauber
Short Communication


The known chemical basis of diverse avian eggshell coloration is generated by the same two classes of tetrapyrrole pigments in most living birds. We aimed to extend the evolutionary scope of these patterns by detecting pigments from extinct birds’ eggs. In our samples biliverdin was successfully extracted from subfossil shell fragments of the blue-green egg-laying upland moa Megalapteryx didinus, while protoporphyrin was extracted from the beige eggs of two other extinct moa species. Our data on pigment detection from eggshells of other extant paleognath birds, together with published information on other modern lineages, confirm tetrapyrroles as ubiquitous and conserved pigments contributing to diverse eggshell colours throughout avian evolution.


Egg matrix Pigmentation Radiation Ratite 



We are grateful to the School of Biological Sciences at the University of Auckland for major support. We thank D. Dearborn, M. Hyland, C. Moskat, H. Silyn-Roberts, The University of Auckland Vice-Chancellor’s Development Fund and the Human Frontier Science Program (to P.C., T.G. and M.E.H.) for assistance, discussions, and funding.


  1. Aviles JM, Stokke BG, Moksnes A, Roskaft E, Moller AP (2007) Environmental conditions influence egg color of reed warblers Acrocephalus scirpaceus and their parasite, the common cuckoo Cuculus canorus. Behav Ecol Sociobiol 61:475–485CrossRefGoogle Scholar
  2. Brennan PLR (2009) Incubation behavior of great tinamous (Tinamus major). Wilson J Ornithol 121:506–511CrossRefGoogle Scholar
  3. Bunce M, Worthy TH, Ford T, Hoppitt W, Willerslev E, Drummond A, Cooper A (2003) Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature 425:172–175CrossRefPubMedGoogle Scholar
  4. Bunce M, Worthy TH, Phillips MJ, Holdaway RN, Willerslev E, Haile J, Shapiro B, Scofield RP, Drummond A, Kamp PJJ, Cooper A (2009) The evolutionary history of the extinct ratite moa and New Zealand Neogene paleogeography. Proc Natl Acad Sci USA 106:20646–20651CrossRefGoogle Scholar
  5. Cassey P, Honza M, Grim T, Hauber ME (2008) The modeling of avian visual perception predicts behavioural rejection responses to foreign egg colours. Biol Lett 4:515–517CrossRefPubMedGoogle Scholar
  6. Cassey P, Ewen JG, Marshall NJ, Vorobyev M, Blackburn TM, Hauber ME (2009) Are avian eggshell colours effective intraspecific communication signals? A perceptual modeling approach. Ibis 151:689–698CrossRefGoogle Scholar
  7. Corfield JR, Wild JM, Hauber ME, Parsons S, Kubke MF (2008) Evolution of brain size in the Palaeognath lineage, with an emphasis on New Zealand ratites. Brain Behav Evol 71:87–99CrossRefPubMedGoogle Scholar
  8. Fadzly N, Jack C, Schaefer HM, Burns KC (2009) Ontogenetic colour changes in an insular tree species: signalling to extinct browsing birds? New Phytol 184:495–501CrossRefPubMedGoogle Scholar
  9. Gill BJ (2007) Eggshell characteristics of moa eggs (Aves: Dinornithiformes). J R Soc N Z 37:139–150Google Scholar
  10. Gorchein A, Lim CK, Cassey P (2009) Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry. Biomed Chromatogr 23:602–606CrossRefPubMedGoogle Scholar
  11. Huynen L, Millar CD, Scofield RP, Lambert DM (2003) Nuclear DNA sequences detect species limits in ancient moa. Nature 425:175–178CrossRefPubMedGoogle Scholar
  12. Kennedy GY, Vevers HG (1976) A survey of eggshell pigments. Comp Biochem Physiol B Biochem Mol Biol 55:117–123CrossRefGoogle Scholar
  13. Kilner RM (2006) The evolution of egg colour and patterning in birds. Biol Rev 81:383–406CrossRefPubMedGoogle Scholar
  14. Miksik I, Holan V, Deyl Z (1996) Avian eggshell pigments and their variability. Comp Biochem Physiol B 113:607–612CrossRefGoogle Scholar
  15. Miksik I, Eckhardt A, Sedlakova P, Mikulikova K (2007) Proteins of insoluble matrix of avian (Gallus gallus) eggshell. Connect Tissue Res 48:1–8CrossRefPubMedGoogle Scholar
  16. Moreno J, Lobato E, Morales J, Merino S, Tomas G, Martinez-de la Puente J, Sanz JJ, Mateo R, Soler JJ (2006) Experimental evidence that egg color indicates female condition at laying in a songbird. Behav Ecol 17:651–655CrossRefGoogle Scholar
  17. Patek SN, Oakley TH (2003) Comparative tests of evolutionary tradeoffs in a palinurid lobster acoustic system. Evolution 57:2082–2100PubMedGoogle Scholar
  18. Rawlence NJ, Wood JR, Armstrong KN, Cooper A (2009) DNA content and distribution in ancient feathers and potential to reconstruct the plumage of extinct avian taxa. Proc R Soc Lond B 276:3395–3402CrossRefGoogle Scholar
  19. Reynolds SJ, Martin GR, Cassey P (2009) Is sexual selection blurring the functional significance of eggshell coloration hypotheses? Anim Behav 78:209–215CrossRefGoogle Scholar
  20. Sharp RM, Silyn-Roberts H (1984) Development of preferred orientation in the eggshell of the domestic fowl. Biophys J 46:175–179CrossRefPubMedGoogle Scholar
  21. Starling M, Heinsohn R, Cockburn A, Langmore NE (2006) Cryptic gentes revealed in pallid cuckoos Cuculus pallidus using reflectance spectrophotometry. Proc R Soc Lond B 273:1929–1934CrossRefGoogle Scholar
  22. Tennyson A, Martinson P (2006) Extinct birds of New Zealand. Te Papa Press, WellingtonGoogle Scholar
  23. Turvey ST, Green OR, Holdaway RN (2005) Cortical growth marks reveal extended juvenile development in New Zealand moa. Nature 435:940–943CrossRefPubMedGoogle Scholar
  24. Varricchio DJ, Moore JR, Erickson GM, Norell MA, Jackson FD, Borkowski JJ (2008) Avian paternal care had dinosaur origin. Science 322:1826CrossRefPubMedGoogle Scholar
  25. Walters M (1994) Birds’ eggs. Dorling Kindersley, LondonGoogle Scholar
  26. Wang XT, Zhao CJ, Li JY, Xu GY, Lian LS, Wu CX, Deng XM (2009) Comparison of the total amount of eggshell pigments in Dongxiang brown-shelled and Dongxiang blue-shelled eggs. Poult Sci 88:1735–1739CrossRefPubMedGoogle Scholar
  27. Zelenitsky DK, Therrien F, Kobayashi Y (2009) Olfactory acuity in theropods: palaeobiological and evolutionary implications. Proc R Soc Lond B 276:667–673CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Branislav Igic
    • 1
  • David R. Greenwood
    • 1
    • 2
  • David J. Palmer
    • 1
  • Phillip Cassey
    • 3
  • Brian J. Gill
    • 4
  • Tomas Grim
    • 5
  • Patricia L. R. Brennan
    • 6
  • Suzanne M. Bassett
    • 7
  • Phil F. Battley
    • 1
    • 8
  • Mark E. Hauber
    • 1
    • 9
  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Plant and Food ResearchUniversity of AucklandAucklandNew Zealand
  3. 3.School of BiosciencesUniversity of BirminghamBirminghamUK
  4. 4.Auckland War Memorial MuseumAucklandNew Zealand
  5. 5.Department of Zoology and Laboratory of OrnithologyPalacky UniversityOlomoucCzech Republic
  6. 6.Department of Ecology and Evolutionary Biology, Peabody MuseumYale UniversityNew HavenUSA
  7. 7.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  8. 8.Ecology GroupMassey UniversityPalmerston NorthNew Zealand
  9. 9.Department of Psychology, Hunter CollegeCUNYNew YorkUSA

Personalised recommendations