Chemoecology

, Volume 20, Issue 2, pp 135–147

Investigation of odors in the fragrance industry

  • Boris Schilling
  • Roman Kaiser
  • Andreas Natsch
  • Markus Gautschi
Review Paper

Abstract

Scents form the basis for the fragrance industry and various research activities have been developed in different scientific disciplines all being linked by a common interest in odors and odor perception. In this paper, four different topics have been selected for a short discussion. Following a short overview on the history of perfumery, the first topic (Natural scents) is providing some insight into the investigation of natural scents and how this work has strongly stimulated fragrance creation as well as the quest to find new odoriferous substances for the perfumer’s palette. The second subject (Fragrance chemistry) gives a historical overview over the chemistry of fragrances and briefly describes the rational behind the synthesis and composition of new scents. Body odors and their biochemical formation concern the third topic (Body odor biochemistry) which describes our current understanding of this scientifically interesting field and how knowledge may find use to improve future deodorant products. The fourth subject (Olfactory mechanisms) deals with the biochemistry in the human nose when odorants are activating olfactory receptors and enzymes appear to rapidly metabolize the inhaled odorous stimuli. This review does not attempt to be comprehensive, but it describes selected successes in the fragrance industry and the motivation behind conducting various types of research. Ultimately, the activities are aiming to bring new ingredients onto the market and improve the quality of scented products but also to advance our understanding of the power of communication through fragrance.

Keywords

Fragrance industry Natural scents Odorants Body odors Olfaction P450 

References

  1. Bartschat D, Kuntzsch C, Heil M, Schittrigkeit A, Schumacher K, Mang M, Mosandl A, Kaiser R (1997) Chiral comopunds of essential oils XXI: (E, Z)-2,3-dihydrofarnesals–chirospecific analysis and structure elucidation of the stereoisomers. Phytochem Anal 8:159–166CrossRefGoogle Scholar
  2. Baur A (1891) Studien über den künstlichen Moschus. Ber Dtsch Chem Ges 24:2832–2843CrossRefGoogle Scholar
  3. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187CrossRefPubMedGoogle Scholar
  4. Chougnet A, Woggon WD, Locher E, Schilling B (2009) Synthesis and in vitro activity of heterocyclic inhibitors of CYP2A6 and CYP2A13—two cytochrome P450 enzymes present in the respiratory tract. ChemBioChem, in pressGoogle Scholar
  5. Dahl AR (1982) The inhibition of rat nasal cytochrome P-450-dependent mono-oxygenase by the essence heliotropin (piperonal). Drug Metab Disp 10:553–554Google Scholar
  6. Dahl AR (1991) The effect of cytochrome P-450-dependent metabolism and other enzyme activities on olfaction. In: Getchell TV, Doty RL, Bartoshuk LM, Snow JB (eds) Smell and taste in health and disease. Raven Press, New York, pp 51–70Google Scholar
  7. Derrer S, Flachmann F, Plessis C, Stang M (2007) Applied photochemistry—light controlled perfume release. Chimia 61:665–669CrossRefGoogle Scholar
  8. Ding X, Dahl AR (2003) Olfactory mucosa: composition, enzymatic localization and metabolism. In: Doty RL (ed) Handbook of olfaction and gustation, 2nd edn. Marcel Dekker, New York, pp 51–73Google Scholar
  9. Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149–173CrossRefPubMedGoogle Scholar
  10. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902CrossRefPubMedGoogle Scholar
  11. Emter R, Natsch A (2008) The sequential action of a dipeptidase and a β-lyase is required for the release of the human body odorant 3-methyl-3-sulfanylhexan-1-ol from a secreted Cys-Gly-(S) conjugate by Corynebacteria. J Biol Chem 283:20645–20652CrossRefPubMedGoogle Scholar
  12. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218CrossRefPubMedGoogle Scholar
  13. Flachsmann F, Gautschi M, Bachmann JP, Brunner G (2008) Enzyme-triggered and self-cleaving fragrant alcohol precursors. Chem Biodiv 5:1115–1136CrossRefGoogle Scholar
  14. Fráter G, Mueller U, Petrzilka M (1995) Preparation of (4S,7RS)-1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[γ]-2-benzopyran as an odorous substance. Patent application, EP0677521Google Scholar
  15. Fráter G, Bajgrowicz JA, Kraft P (1998) Fragrance chemistry. Tetrahedron 54:7633–7703CrossRefGoogle Scholar
  16. Fráter G, Mueller U, Kraft P (1999) Preparation and olfactory characterization of the enantiomerically pure perfumery synthetic Galaxolide. Helv Chim Acta 82:1656–1665CrossRefGoogle Scholar
  17. Gautschi M, Bajgrowicz JA, Kraft P (2001) Fragrance chemistry—milestones and perspectives. Chimia 55:379–387Google Scholar
  18. Gautschi M, Natsch A, Schröder F (2007) Biochemistry of human axilla malodor and chemistry of deodorant ingredients. Chimia 61:27–32CrossRefGoogle Scholar
  19. Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11:685–707CrossRefPubMedGoogle Scholar
  20. Grab W, Gfeller H (2000) Flavorspace: a new technology for the measurement of fast dynamic changes of flavor release during eating. In: Roberts DD, Taylor AJ (eds) ACS Symposium Series 763–Flavor Release. American Chemical Society, Washington, DC, pp 33–43Google Scholar
  21. Granier T, Hanhart A, Bajgrowicz JA (2005) Bicyclo[3.3.1]nonanes and bicyclo[3.3.1]nonenes and their use as flavour or fragrance ingredient. Patent application, WO/2005/070860Google Scholar
  22. Gygax HR, Schmid N (2004) Fragrance dispensing device. Patent application, WO/2004/009142Google Scholar
  23. Hasegawa Y, Yabuki M, Matsukane M (2004) Identification of new odoriferous compounds in human axillary sweat. Chem Biodiv 1:2042–2050CrossRefGoogle Scholar
  24. Herrmann A (2007) Controlled release of volatiles under mild reaction conditions: from nature to everyday products. Angew Chem Int Ed 46:5836–5863CrossRefGoogle Scholar
  25. Hornung DE, Mozell MM (1977) Preliminary data suggesting alteration of odorant molecules by interaction with receptors. In: Le Magnen J, MacLeod P (eds) Olfaction and taste. Information Retrieval, London, p 63Google Scholar
  26. Kaiser R (1991) Trapping, investigation and reconstitution of lower scents. In: Müller PM, Lamparsky D (eds) Perfumers – Art, Science & Technology. Elsevier Applied Sciences, pp 213–250Google Scholar
  27. Kaiser R (2006a) Flower and fungi use scents to mimic each other. Science 311:806–807CrossRefPubMedGoogle Scholar
  28. Kaiser R (2006b) Meaningful scents around the world. Wiley, VCHGoogle Scholar
  29. Kaiser R, Kraft P (2001) Neue und ungewöhnliche Naturstoffe faszinierender Blütendüfte. Chemie in unserer Zeit 35:8–23CrossRefGoogle Scholar
  30. Kaiser R, Lamparsky D (1980) Constituants azotés en trace de quelques absolues de fleurs et leurs headspaces correspondants. In: FEDAROM (ed) Proceedings 8th international congress of essential oils, Cannes 1980, Grasse (1982) pp 287–294Google Scholar
  31. Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449:468–472CrossRefPubMedGoogle Scholar
  32. Khojasteh-Bakht SC, Weiqiao C, Koenigs LL, Peter RM, Nelson SD (1999) Metabolism of (R)-(+)-menthofuran by human liver cytochrome P450s: Evidence for formation of a furan epoxide. Drug Metab Disp 27:574–580Google Scholar
  33. Kistiakowsky GB (1950) On the theory of odors. Science 112:154–155CrossRefPubMedGoogle Scholar
  34. Kraft P, Bajgrowicz JA, Denis C, Fráter G (2000) Odds and trends: recent developments in the chemistry of odorants. Angew Chem Int Ed 39:2980–3010Google Scholar
  35. Kuhn F, Natsch A (2009) Body odour of monozygotic human twins: a common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type. J R Soc Interface 6:377–392PubMedGoogle Scholar
  36. Laughlin JD, Ha TS, Jones DNM, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133:1255–1265CrossRefPubMedGoogle Scholar
  37. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723CrossRefPubMedGoogle Scholar
  38. Matarazzo V, Clot-Faybesse O, Marcet B, Guiraudie-Capraz G, Atanasova B, Devauchelle G, Cerutti M, Etiévant P, Ronin C (2005) Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem Senses 30:195–207CrossRefPubMedGoogle Scholar
  39. Menashe I, Man O, Lancet D, Gilad Y (2003) Different noses for different people. Nat Genet 34:143–144CrossRefPubMedGoogle Scholar
  40. Menashe I, Abaffy T, Hasin Y, Goshen S, Yahalom V, Luetje CW, Lancet D (2007) Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol 5:2462–2468CrossRefGoogle Scholar
  41. Mombaerts P (1999) Seven transmembrane proteins as odorant and chemosensory receptors. Science 286:707–711CrossRefPubMedGoogle Scholar
  42. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686CrossRefPubMedGoogle Scholar
  43. Natsch A, Gfeller H, Gygax P, Schmid J, Acuña G (2003) A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla. J Biol Chem 278:5718–5727CrossRefPubMedGoogle Scholar
  44. Natsch A, Schmid J, Flachsmann F (2004) Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chem Biodiv 1:1058–1072CrossRefGoogle Scholar
  45. Natsch A, Derrer S, Flachsmann F, Schmid J (2006) A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human body odor type. Chem Biodiv 3:1–20CrossRefGoogle Scholar
  46. Ohloff G (1992a) Seventy-five years of scent and aroma chemistry as reflected in Helvetica Chimica Acta. Helv Chim Acta 75:1341–1415CrossRefGoogle Scholar
  47. Ohloff G (1992b) Seventy-five years of odoriferous substance and aroma chemistry reflected in Helvetica Chimica Acta. Helv Chim Acta 75:2041–2108CrossRefGoogle Scholar
  48. Pelosi P (2001) The role of perireceptor events in vertebrate olfaction. Cell Mol Life Sci 58:503–509CrossRefPubMedGoogle Scholar
  49. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opn Plant Biol 5:237–243CrossRefGoogle Scholar
  50. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2:ra9CrossRefPubMedGoogle Scholar
  51. Sanz G, Schlegel C, Pernollet JC, Briand L (2005) Comparison of odorant specificity of two human olfactory receptors from different phylogenetic classes and evidence for antagonism. Chem Senses 30:69–80CrossRefPubMedGoogle Scholar
  52. Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422CrossRefGoogle Scholar
  53. Schilling B, Granier T, Fráter G, Hanhart A (2008a) Organic compounds. Patent application, WO/2008/116338Google Scholar
  54. Schilling B, Woggon WD, Chougnet A, Granier T, Fráter G, Hanhart A (2008b) Organic compounds. Patent application, WO/2008/116339Google Scholar
  55. Schmiedeberg K, Shirokova E, Weber HP, Schilling B, Meyerhof W, Krautwurst D (2007) Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J Struct Biol 159:400–412CrossRefPubMedGoogle Scholar
  56. Shelley WB, Hurley HJ, Nichols AC (1953) Axillary odor: experimental study of the role of bacteria, apocrine sweat, and deodorants. Arch Derm Syphilol 68:430–446Google Scholar
  57. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–2058CrossRefPubMedGoogle Scholar
  58. Starkenmann C, Niclass Y, Troccaz M, Clark AJ (2005) Identification of the precursor of (S)-3-methyl-3-sulfanylhexan-1-ol, the sulfury malodour of human axilla sweat. Chem Biodiv 2:705–716CrossRefGoogle Scholar
  59. Su T, Bao ZP, Zhang QY, Smith TJ, Hong JY, Ding X (2000) Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 60:5074–5079PubMedGoogle Scholar
  60. Troccaz M, Starkenmann C, Niclass Y, Van de Waal M, Clark AJ (2004) 3-Methyl-3-sulfanylhexan-1-ol as a major descriptor for human axilla-sweat odour profile. Chem Biodiv 1:1022–1034CrossRefGoogle Scholar
  61. Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology. Elsevier, London, pp 391–446CrossRefGoogle Scholar
  62. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163CrossRefPubMedGoogle Scholar
  63. Wedekind C, Seebeck T, Bettens F, Paepke AJ (1995) MHC-dependent mate preferences in humans. Proc R Soc Lond Ser B Biol Sci 260:245–249CrossRefGoogle Scholar
  64. Wetzel CH, Oles C, Wellerdieck C, Kuczkowiak M, Gisselmann G, Hatt H (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in Human Embryonic Kidney 293 cells and Xenopus laevis oocytes. J Neurosci 19:7426–7433PubMedGoogle Scholar
  65. Wyatt TD (2009) Fifty years of pheromones. Nature 457:262–263CrossRefPubMedGoogle Scholar
  66. Xu PX, Atkinson R, Jones DNM, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200CrossRefPubMedGoogle Scholar
  67. Yamazaki K, Boyse EA, Mike V, Thaler HT, Mathieson BJ, Abbott J, Boyse J, Zayas ZA, Thomas L (1976) Control of mating preferences in mice by genes in the major histocompatibility complex. J Exp Med 144:1324–1335CrossRefPubMedGoogle Scholar
  68. Yamazaki K, Beauchamp GK, Imia Y, Bard J, Phelan SP, Thomas L, Boyse EA (1990) Odortypes determined by the major histocompatibility complex in germfree mice. Proc Natl Acad Sci USA 87:8413–8416CrossRefPubMedGoogle Scholar
  69. Zeng XN, Leyden JJ, Brand JG, Spielman AI, McGinley KJ, Preti G (1992) An investigation of human apocrine gland secretion for axillary odor precursors. J Chem Ecol 18:1039–1055CrossRefGoogle Scholar
  70. Zhang X, Zhang QY, Liu D, Su T, Weng Y, Ling G, Chen Y, Gu J, Schilling B, Ding X (2005) Expression of cytochrome P450 and other biotransformation genes in fetal and adult human nasal mucosa. Drug Metab Disp 33:1423–1428CrossRefGoogle Scholar
  71. Zozulya W, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2:RESEARCH0018.1–0018.12Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Boris Schilling
    • 1
  • Roman Kaiser
    • 1
  • Andreas Natsch
    • 1
  • Markus Gautschi
    • 1
  1. 1.Givaudan Schweiz AG, Fragrance ResearchDuebendorfSwitzerland

Personalised recommendations