Advertisement

Chemoecology

, 19:235 | Cite as

Target-site sensitivity in a specialized herbivore towards major toxic compounds of its host plant: the Na+K+-ATPase of the oleander hawk moth (Daphnis nerii) is highly susceptible to cardenolides

  • Georg PetschenkaEmail author
  • Susanne Dobler
Short Communication

Abstract

The caterpillars of the oleander hawk moth, Daphnis nerii (Linnaeus, 1758) (Lepidoptera: Sphingidae) feed primarily on oleander (Nerium oleander). This plant is rich in cardenolides, which specifically inhibit the Na+K+-ATPase. Since some insects feeding on cardenolide plants possess cardenolide-resistant Na+K+-ATPases, we tested whether D. nerii also possesses this strategy for circumventing cardenolide toxicity. To do so, we established a physiological assay, which allowed direct measurement of Na+K+-ATPase cardenolide sensitivity. Using Schistocerca gregaria, as a cardenolide-sensitive reference species, we showed that D. nerii Na+K+-ATPase was extremely sensitive to the cardenolide ouabain. Surprisingly, its sensitivity is even higher than that of the cardenolide-sensitive generalist, S. gregaria. The presence or absence of cardenolides in the diet of D. nerii did not influence the enzyme’s cardenolide sensitivity, indicating that target-site insensitivity is not inducible in this species. However, despite the sensitivity of their Na+K+-ATPase, caterpillars of D. nerii quickly recovered from an injection of an excessive amount of ouabain into their haemocoel. We conclude that D. nerii possesses adaptations, which enable it to feed on a cardenolide-rich diet other than that previously described in cardenolide specialized insects, and discuss other potential resistance mechanisms.

Keywords

Daphnis nerii Nerium oleander Cardenolides Ouabain Na+K+-ATPase Adaptation Schistocerca gregaria 

Notes

Acknowledgments

We thank Samuel Waldron, Yvonne Lebrecht and Karin Meyer for help with rearing caterpillars, Kai Fuchsberger (Reutlingen) for his valuable suggestions on data evaluation, and Scott Kelley (San Diego) for correcting the English of the manuscript and for helpful suggestions. Financial support for this study was provided by a Ph.D. scholarship of the Studienstiftung des deutschen Volkes to G.P. and by the Deutsche Forschungsgemeinschaft (Do527/5-1).

References

  1. Abe F, Yamauchi T, Minato K (1996) Presence of cardenolides and ursolic acid from oleander leaves in larvae and frass of Daphnis nerii. Phytochemistry 42:45–49CrossRefGoogle Scholar
  2. Al-Robai AA (1993) Different ouabain sensitivities of Na+/K+-ATPase from Poekilocerus bufonius tissues and a possible physiological cost. Comp Biochem Physiol B 106:805–812CrossRefPubMedGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Brower LP, Seiber JN, Nelson CJ, Lynch SP, Tuskes PM (1982) Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus reared on the milkweed, Asclepias eriocarpa in California. J Chem Ecol 8:579–633CrossRefGoogle Scholar
  5. Croyle ML, Woo AL, Lingrel JB (1997) Extensive random mutagenesis analysis of the Na+/K+-ATPase α subunit identifies known and previously unidentified amino acid residues that alter ouabain sensitivity. Implications for ouabain binding. Eur J Biochem 248:488–495CrossRefPubMedGoogle Scholar
  6. Dobler S (2004) The evolution of adaptations to plant secondary compounds in Chrysochus leaf beetles (Chrysomelidae, Eumolpinae). In: Jolivet PH, Santiago-Blay JA, Schmitt M (eds) New developments in the biology of Chrysomelidae. SPB Academic Publishing, The Hague, pp 117–123Google Scholar
  7. Dussourd DE, Hoyle AM (2000) Poisoned plusiines: toxicity of milkweed latex and cardenolides to some generalist caterpillars. Chemoecology 10:11–16CrossRefGoogle Scholar
  8. Emery AM, Billingsley PF, Ready PD, Djamgoz MBA (1998) Insect Na+/K+-ATPase. J Insect Physiol 44:197–210CrossRefPubMedGoogle Scholar
  9. Falbe J, Regitz M (1995) CD Römpp 9., erweiterte und überarbeitete Auflage des Römpp Chemie Lexikons auf CD-ROM, Version 1.0. Thieme, StuttgartGoogle Scholar
  10. Frohne D, Pfänder HJ (2004) Giftpflanzen. Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  11. Holzinger F, Wink M (1996) Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): role of an amino acid substitution in the ouabain binding site of Na+, K+-ATPase. J Chem Ecol 22:1921–1937CrossRefGoogle Scholar
  12. Holzinger F, Frick C, Wink M (1992) Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314:477–480CrossRefPubMedGoogle Scholar
  13. Imai S, Murase H, Katori M, Okada M, Shigei T (1965) A study on the structure–activity relationship of the cardiotonic steroids. Jpn J Pharmacol 15:62–71CrossRefPubMedGoogle Scholar
  14. Jäger HH, Schindler O, Weiss E, Reichstein T (1965) 21. Die Cardenolide von Strophanthus gratus (WALL. et HOOK.) FRANCH. Glykoside und Aglykone, 265. Mitteilung Helv Chim Acta 48:202–209CrossRefGoogle Scholar
  15. Karowe DN, Golston V (2006) Effect of the cardenolide digitoxin on performance of gypsy moth (Lymantria dispar) (Lepidoptera: Lymantriidae) caterpillars. Gt Lakes Entomol 39:34–38Google Scholar
  16. Labeyrie E, Dobler S (2004) Molecular adaptation of Chrysochus leaf beetles to toxic compounds in their food plants. Mol Biol Evol 21:218–221CrossRefPubMedGoogle Scholar
  17. Lebovitz RM, Takeyasu K, Fambrough DM (1989) Molecular characterization and expression of the (Na++K+)-ATPase alpha-subunit in Drosophila melanogaster. EMBO J 8:193–202PubMedGoogle Scholar
  18. Lingrel JB (1992) Na, K-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24:263–270PubMedGoogle Scholar
  19. Luckner M, Wichtl M (2000) Digitalis. Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  20. Mebs D, Zehner R, Schneider M (2000) Molecular studies on the ouabain binding site of the Na+, K+-ATPase in milkweed butterflies. Chemoecology 10:201–203CrossRefGoogle Scholar
  21. Moore LV, Scudder GGE (1986) Ouabain-resistant Na, K-ATPases and cardenolide tolerance in the large milkweed bug, Oncopeltus fasciatus. J Insect Physiol 32:27–33CrossRefGoogle Scholar
  22. Parsons JA (1965) A digitalis-like toxin in the monarch butterfly, Danaus plexippus L. J Physiol 178:290–304PubMedGoogle Scholar
  23. Pittaway AR (1993) The hawk moths of the Western Palaearctic. Harley Books, UKGoogle Scholar
  24. Qiu LY, Krieger E, Schaftenaar G, Swarts HG, Willems PH, De Pont JJ, Koenderink JB (2005) Reconstruction of the complete ouabain-binding pocket of Na, K-ATPase in gastric H, K-ATPase by substitution of only seven amino acids. J Biol Chem 280:32349–32355CrossRefPubMedGoogle Scholar
  25. Rothschild M (1985) British aposematic Lepidoptera. In: Heath J, Emmet AM (eds) The moths and butterflies of Great Britain and Ireland, vol 2. Harley Books, UK, pp 9–62Google Scholar
  26. Rothschild M, von Euw J, Reichstein T (1970) Cardiac glycosides in the oleander aphid, Aphis nerii. J Insect Physiol 16:1141–1145CrossRefPubMedGoogle Scholar
  27. Schatzmann H-J (1953) Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta 11:346–354PubMedGoogle Scholar
  28. Scudder GGE, Meredith J (1982) The permeability of the midgut of three insects to cardiac glycosides. J Insect Physiol 28:689–694CrossRefGoogle Scholar
  29. Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685PubMedGoogle Scholar
  30. Torrie LS, Radford JC, Southall TD, Kean L, Dinsmore AJ, Davies SA, Dow JAT (2004) Resolution of the insect ouabain paradox. Proc Natl Acad Sci USA 101:13689–13693CrossRefPubMedGoogle Scholar
  31. Tschesche R, Bohle K (1938) Über pflanzliche Herzgifte, XVI. Mitteil.: Zur Konstitution des Adynerins. Ber deutsch chem Ges 71:654–660CrossRefGoogle Scholar
  32. Vaughan GL, Jungreis AM (1977) Insensitivity of lepidopteran tissues to ouabain: physiological mechanisms for protection from cardiac glycosides. J Insect Physiol 23:585–589CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Biozentrum Grindel, Molekulare EvolutionsbiologieHamburgGermany

Personalised recommendations