Chemoecology

, 19:117 | Cite as

Plant chemistry and insect sequestration

Review Paper

Abstract

Most plant families are distinguished by characteristic secondary metabolites, which can function as putative defence against herbivores. However, many herbivorous insects of different orders can make use of these plant-synthesised compounds by ingesting and storing them in their body tissue or integument. Such sequestration of putatively unpalatable or toxic metabolites can enhance the insects’ own defence against enemies and may also be involved in reproductive behaviour. This review gives a comprehensive overview of all groups of secondary plant metabolites for which sequestration by insect herbivores belonging to different orders has been demonstrated. Sequestered compounds include various aromatic compounds, nitrogen-containing metabolites such as alkaloids, cyanogenic glycosides, glucosinolates and other sulphur-containing metabolites, and isoprenoids such as cardiac glycosides, cucurbitacins, iridoid glycosides and others. Sequestration of plant compounds has been investigated most in insects feeding or gathering on Apocynaceae s.l. (Apocynoideae, Asclepiaoideae), Aristolochiaceae, Asteraceae, Boraginaceae, Fabaceae and Plantaginaceae, but it also occurs for some gymnosperms and even lichens. In total, more than 250 insect species have been shown to sequester plant metabolites from at least 40 plant families. Sequestration predominates in the Coleoptera and Lepidoptera, but also occurs frequently in the orders Heteroptera, Hymenoptera, Orthoptera and Sternorrhyncha. Patterns of sequestration mechanisms for various compound classes and common or individual features occurring in different insect orders are highlighted. More research is needed to elucidate the specific transport mechanisms and the physiological processes of sequestration in various insect species.

Keywords

Insect herbivores Plant metabolites Sequestration Review Transport 

References

  1. Abe F, Yamauchi T, Honda K, Omura H, Hayashi N (2001) Sequestration of phenanthroindolizidine alkaloids by an Asclepiadaceae-feeding danaid butterfly, Ideopsis similis. Phytochemistry 56:697–701PubMedCrossRefGoogle Scholar
  2. Abushama FT (1972) Repugnatorial gland of grasshopper Poekilocerus hieroglyphicus (Klug). J Entomol (A) 47:95–100Google Scholar
  3. Ackery PR, Nash RJ, Bell EA, Norstog K (1993) Sequestration of MAM-glycosides in insects. In: Stevenson DW, Norstog K (eds) Proceedings of the second international conference on cycad biology. Palm and Cycad Societies of Australia, Milton, pp 3–7Google Scholar
  4. Agerbirk N, Müller C, Olsen CE, Chew FS (2006) A common pathway for detoxification of 4-hydroxybenzylglucosinolate in Pieris and Anthocaris (Lepidoptera: Pieridae). Biochem Syst Ecol 34:189–198CrossRefGoogle Scholar
  5. Aldrich JR, Carroll SP, Lusby WR, Thompson MJ, Kochansky JP, Waters RM (1990) Sapindaceae, cyanolipids and bugs. J Chem Ecol 16:199–210CrossRefGoogle Scholar
  6. Aliabadi A, Renwick JAA, Whitman DW (2002) Sequestration of glucosinolates by harlequin bug Murgantia histrionica. J Chem Ecol 28:1749–1762PubMedCrossRefGoogle Scholar
  7. Amano T, Nishida R, Kuwahara Y, Fukami H (1999) Pharmacophagous acquisition of clerodendrins by the turnip sawfly (Athalia rosae ruficornis) and their role in the mating behavior. Chemoecology 9:145–150CrossRefGoogle Scholar
  8. Andersen JF, Plattner RD, Weisleder D (1988) Metabolic transformations of cucurbitacins by Diabrotica virgifera virgifera Leconte and D. undecimpunctata howardi Barber. Insect Biochem 18:71–77CrossRefGoogle Scholar
  9. Aplin RT, Rothschild M (1972) Poisonous alkaloids in the body tissue of the garden tiger moth (Arctia caja L.) and the cinnabar moth (Tyria jacobaeae L.) (Lepidoptera). In: De Vries A, Kochva E (eds) Toxins of animal and plant origin. Gordon and Breach Sci Pub, New York, pp 579–595Google Scholar
  10. Aplin RT, D’Arcy Ward R, Rothschild M (1975) Examination of the large white butterfly and small white butterflies (Pieris spp.) for the presence of mustard oils and mustard oil glycosides. J Entomol (A) 50(7):3–78Google Scholar
  11. Baden CU, Dobler S (2009) Potential benefits of iridoid glycoside sequestration in Longitarsus melanocephalus (Coleoptera, Chrysomelidae). Basic Appl Ecol 10:27–33CrossRefGoogle Scholar
  12. Bell TW, Meinwald J (1986) Pheromones of 2 arctiid moths (Creatonotos transiens and Creatonotos gangis)—chiral components from both sexes and achiral female components. J Chem Ecol 12:385–409CrossRefGoogle Scholar
  13. Belofsky G, Bowers MD, Janzen S, Stermitz F (1989) Iridoid glycosides of Aureolaria flava and their sequestration by Euphydryas phaeton butterflies. Phytochemistry 28:1601–1604CrossRefGoogle Scholar
  14. Benn M, Degrave J, Gnanasunderam C, Hutchins R (1979) Host-plant pyrrolizidine alkaloids in Nyctemera annulata Boisduval—their persistence through the lifecycle and transfer to a parasite. Experientia 35:731–732CrossRefGoogle Scholar
  15. Bernays EA, Woodhead S (1982) Incorporation of dietary phenols into the cuticle in the tree locust Anacridium melanorhodon. J Insect Physiol 28:601–606CrossRefGoogle Scholar
  16. Bernays E, Edgar JA, Rothschild M (1977) Pyrrolizidine alkaloids sequestered and stored by aposematic grasshopper, Zonocerus variegatus. J Zool 182:85–87CrossRefGoogle Scholar
  17. Biller A, Boppré M, Witte L, Hartmann T (1994) Pyrrolizidine alkaloids in Chromolaena odorata—chemical and chemoecological aspects. Phytochemistry 35:615–619CrossRefGoogle Scholar
  18. Blum MS (1983) Detoxication, deactivation, and utilization of plant compounds by insects. In: Hedin PA (ed) Plant resistance to insects. American Chemical Soc, Washington, pp 265–275CrossRefGoogle Scholar
  19. Blum MS, Rivier L, Plowman T (1981) Fate of cocaine in the lymantriid Eloria noyesi, a predator of Erythroxylum coca. Phytochemistry 20:2499–2500CrossRefGoogle Scholar
  20. Blum MS, Severson RF, Arrendale RF, Whitman DW, Escoubas P, Adeyeye O, Jones CG (1990) A generalist herbivore in a specialist mode—metabolic, sequestrative, and defensive consequences. J Chem Ecol 16:223–244CrossRefGoogle Scholar
  21. Boevé J-L, Schaffner U (2003) Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134:104–111PubMedCrossRefGoogle Scholar
  22. Bogner F, Boppré M (1989) Single cell recordings reveal hydroxydanaidal as the volatile compound attracting insects to pyrrolizidine alkaloids. Entomol Exp Appl 50:171–184CrossRefGoogle Scholar
  23. Boppré M (1978) Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies. Entomol Exp Appl 24:264–277CrossRefGoogle Scholar
  24. Boppré M (1984) Redefining pharmacophagy. J Chem Ecol 10:1151–1154CrossRefGoogle Scholar
  25. Boppré M (1986) Insects pharmacophagously utilizing defensive plant-chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26CrossRefGoogle Scholar
  26. Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids—exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185CrossRefGoogle Scholar
  27. Boros CA, Stermitz FR, McFarland N (1991) Processing of iridoid glycoside antirrinoside from Maurandya antirrhiniflora (Scrophulariaceae) by Meris paradoxa (Geometridae) and Lepipolys species (Noctuidae). J Chem Ecol 17:1123–1133CrossRefGoogle Scholar
  28. Bowers MD (1988) Chemistry and coevolution: iridoid glycosides, plants, and herbivorous insects. In: Spencer KV (ed) Chemical mediation of coevolution. Academic Press, London, pp 133–165Google Scholar
  29. Bowers MD (1990) Recycling plant natural products for chemical defense. In: Evans DL (ed) Insect defenses. State University of New York Press, Albany, pp 353–386Google Scholar
  30. Bowers MD (1991) Iridoid glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores their interactions with secondary plant metabolites. Academic Press, San Diego, pp 297–325Google Scholar
  31. Bowers MD (1992) The evolution of unpalatability and the cost of chemical defense in insects. In: Roitberg BD, Isman MB (eds) Insect chemical ecology. An evolutionary approach. Chapman & Hall, New York, pp 216–244Google Scholar
  32. Bowers MD (1993) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp NE, Casey TM (eds) Caterpillars ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp 331–371Google Scholar
  33. Bowers MD (2003) Hostplant suitability and defensive chemistry of the catalpa sphinx, Ceratomia catalpae. J Chem Ecol 29:2359–2367PubMedCrossRefGoogle Scholar
  34. Bowers MD (2008) Chemically defenses in woolly bears: sequestration and efficacy against predators and parasitoids. In: Conner WE (ed) Tiger moths and woolly bears. Oxford University Press, Oxford, pp 83–101Google Scholar
  35. Bowers MD, Collinge SK (1992) Fate of iridoid glycosides in different life stages of the buckeye, Junonia coenia (Lepidoptera, Nymphalidae). J Chem Ecol 18:817–831CrossRefGoogle Scholar
  36. Bowers MD, Farley S (1990) The behaviour of grey jays, Perisoreus canadensis, towards palatable and unpalatable Lepidoptera. Anim Behav 39:699–705CrossRefGoogle Scholar
  37. Bowers MD, Larin Z (1989) Acquired chemical defense in the lycaenid butterfly, Eumaeus atala. J Chem Ecol 15:1133–1146CrossRefGoogle Scholar
  38. Bowers MD, Puttick GM (1986) Fate of ingested iridoid glycosides in lepidopteran herbivores. J Chem Ecol 12:169–178CrossRefGoogle Scholar
  39. Bowers MD, Stamp NE (1997) Fate of host-plant iridoid glycosides in lepidopteran larvae of Nymphalidae and Arctiidae. J Chem Ecol 23:2955–2965CrossRefGoogle Scholar
  40. Bowers MD, Williams EH (1995) Variable chemical defence in the checkerspot butterfly Euphydryas gillettii (Lepidoptera: Nymphalidae). Ecol Entomol 20:208–212CrossRefGoogle Scholar
  41. Bowers MD, Boockvar K, Collinge SK (1993) Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of the sawfly, Tenthredo grandis (Tenthredinidae). J Chem Ecol 19:815–823CrossRefGoogle Scholar
  42. Braekman JC, Daloze D, Pasteels JM (1982) Cyanogenic and other glucosides in a neo-guinean bug Leptocoris isolata—possible precursors in its host-plant. Biochem Syst Ecol 10:355–364CrossRefGoogle Scholar
  43. Brand JM, Bracke JW, Markovetz AJ, Wood DL, Browne LE (1975) Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature 254:136–137PubMedCrossRefGoogle Scholar
  44. Brehm G, Hartmann T, Willmott K (2007) Pyrrolizidine alkaloids and pharmacophagous Lepidoptera visitors of Prestonia amabilis (Apocynaceae) in a montane rainforest in Ecuador. Ann Miss Bot Gard 94:463–473CrossRefGoogle Scholar
  45. Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E, Wallsgrove R, Karapapa VK, Watts N, Rossiter JT (2002) Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond Ser B 269:187–191CrossRefGoogle Scholar
  46. Brower LP (1969) Ecological chemistry. Sci Am 220:22–29PubMedGoogle Scholar
  47. Brower LP (1984) Chemical defense in butterflies. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, London, pp 109–134Google Scholar
  48. Brower LP, Fink LS (1985) A natural toxic defense system—cardenolides in butterflies versus birds. Ann N Y Acad Sci 443:171–188PubMedCrossRefGoogle Scholar
  49. Brower LP, Glazier SC (1975) Localization of heart poisons in monarch butterfly. Science 188:19–25PubMedCrossRefGoogle Scholar
  50. Brower LP, Moffitt CM (1974) Palatability dynamics of cardenolides in monarch butterfly. Nature 249:280–283PubMedCrossRefGoogle Scholar
  51. Brower LP, Williams Kl, McEvoy PB, Flannery MA (1972) Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North-America. Science 177:426–429PubMedCrossRefGoogle Scholar
  52. Brower LP, Gibson DO, Moffitt CM, Panchen AL (1978) Cardenolide content of Danaus chrysippus butterflies from 3 areas of East-Africa. Biol J Linn Soc 10:251–273CrossRefGoogle Scholar
  53. Brower LP, Seiber JN, Nelson CJ, Lynch SP, Tuskes PM (1982) Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus reared on the milkweed Asclepias eriocarpa in California. J Chem Ecol 8:579–633CrossRefGoogle Scholar
  54. Brown KS (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707–709CrossRefGoogle Scholar
  55. Brown KS (1985) Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae (Lepidoptera: Nymphalidae). Rev Bras Biol 44:435–460Google Scholar
  56. Brown KS (1987) Chemistry at the Solanaceae Ithomiinae interface. Ann Miss Bot Gard 74:359–397CrossRefGoogle Scholar
  57. Brown KS, Trigo JR (1994) Multi-level complexity in the use of plant allelochemicals by aposematic insects. Chemoecology 5:119–126CrossRefGoogle Scholar
  58. Brown KS, Trigo JR (1995) The ecological activity of alkaloids. In: Cordell GA (ed) The alkaloids. Academic Press, New York, pp 227–356Google Scholar
  59. Brown KS, Cameron DW, Weiss U (1969) Chemical constituents of bright orange aphid Aphis nerii Fonscolombe. I. Neriaphin and 6-hydroxymusizin 8-O-beta-d-glucoside. Tetrahedron Lett 6:471–476PubMedCrossRefGoogle Scholar
  60. Brown KS, Trigo JR, Francini RB, Morais ABB, Motta PC (1991) Aposematic insects on toxic host plants: coevolution, colonization, and chemical emancipation. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 375–402Google Scholar
  61. Brown KS, Klitzke CF, Berlingeri C, Santos PER (1995) Neotropical swallowtails: chemistry of food plant relationships, population ecology and biosystematics. In: Scriber JM, Tsubaki Y, Lederhouse RC (eds) Swallowtail butterflies: their ecology and evolutionary biology. Scientific Publishers, Gainesville, pp 405–445Google Scholar
  62. Brückmann M, Trigo JR, Foglio MA, Hartmann T (2000) Storage and metabolism of radioactively labeled pyrrolizidine alkaloids by butterflies and larvae of Mechanitis polymnia (Lepidoptera: Nymphalidae, Ithomiinae). Chemoecology 10:25–32CrossRefGoogle Scholar
  63. Brückmann M, Termonia A, Pasteels JM, Hartmann T (2002) Characterization of an extracellular salicyl alcohol oxidase from larval defensive secretions of Chrysomela populi and Phratora vitellinae (Chrysomelina). Insect Biochem Mol Biol 32:1517–1523PubMedCrossRefGoogle Scholar
  64. Brust GE, Barbercheck ME (1992) Effect of dietary cucurbitacin-C on southern corn-rootworm (Coleoptera, Chrysomelidae) egg survival. Environ Entomol 21:1466–1471Google Scholar
  65. Camara MD (1997a) Physiological mechanisms underlying the costs of chemical defence in Junonia coenia Hübner (Nymphalidae): a gravimetric and quantitative genetic analysis. Evol Ecol 11:451–469CrossRefGoogle Scholar
  66. Camara MD (1997b) Predator responses to sequestered plant toxins in buckeye caterpillars: are tritrophic interactions locally variable? J Chem Ecol 23:2093–2106CrossRefGoogle Scholar
  67. Cardoso MZ, Gilbert LE (2007) A male gift to its partner? Cyanogenic glycosides in the spermatophore of longwing butterflies (Heliconius). Naturwissenschaften 94:39–42PubMedCrossRefGoogle Scholar
  68. Castillo-Guevara C, Rico-Gray V (2002) Is cycasin in Eumaeus minyas (Lepidoptera: Lycaenidae) a predator deterrent? Interciencia 27:465–470Google Scholar
  69. Cavin JC, Bradley TJ (1988) Adaptation to ingestion of beta-carboline alkaloids by Heliconiini butterflies. J Insect Physiol 34:1071–1075CrossRefGoogle Scholar
  70. Chen ZL, Zhu DY (1987) Aristolochia alkaloids. In: Brossi A (ed) The alkaloids: chemistry and pharmacology. Academic Press, New York, pp 29–65CrossRefGoogle Scholar
  71. Codella SG, Raffa KF (1995) Host-plant influence on chemical defense in conifer sawflies (Hymenoptera, Diprionidae). Oecologia 104:1–11CrossRefGoogle Scholar
  72. Cohen JA (1985) Differences and similarities in cardenolide contents of queen and monarch butterflies in Florida and their ecological and evolutionary implications. J Chem Ecol 11:85–103CrossRefGoogle Scholar
  73. Cohen JA, Brower LP (1983) Cardenolide sequestration by the dogbane tiger moth (Cycnia tenera, Arctiidae). J Chem Ecol 9:521–532CrossRefGoogle Scholar
  74. Conner WE, Eisner T, Vandermeer RK, Guerrero A, Meinwald J (1981) Pre-copulatory sexual interaction in an arctiid moth (Utetheisa ornatrix)—role of a pheromone derived from dietary alkaloids. Behav Ecol Sociobiol 9:227–235CrossRefGoogle Scholar
  75. Conner WE, Roach B, Benedict E, Meinwald J, Eisner T (1990) Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth, Utetheisa ornatrix. J Chem Ecol 16:543–552CrossRefGoogle Scholar
  76. Conner WE, Boada R, Schroeder FC, Gonzalez A, Meinwald J, Eisner T (2000) Chemical defense: bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc Natl Acad Sci USA 97:14406–14411PubMedCrossRefGoogle Scholar
  77. Culvenor CC, Edgar JA (1972) Dihydropyrrolizine secretions associated with coremata of Utetheisa moths (family Arctiidae). Experientia 28:627–628CrossRefGoogle Scholar
  78. Culvenor CCJ, Edgar JA, Smith LW (1981) Pyrrolizidine alkaloids in honey from Echium plantagineum L. J Agric Food Chem 29:958–960PubMedCrossRefGoogle Scholar
  79. Deinzer ML, Thomson PA, Burgett DM, Isaacson DL (1977) Pyrrolizidine alkaloids—their occurrence in honey from tansy ragwort (Senecio jacobaea L). Science 195:497–499PubMedCrossRefGoogle Scholar
  80. Detzel A, Wink M (1995) Evidence for a cardenolide carrier in Oncopeltus fasciatus (Dallas) (Insecta, Hemiptera). Zeitschr Naturforsch C J Biosci 50:127–134Google Scholar
  81. Dobler S (2001) Evolutionary aspects of defense by recycled plant compounds in herbivorous insects. Basic Appl Ecol 2:15–26CrossRefGoogle Scholar
  82. Dobler S, Rowell-Rahier M (1994) Production of cardenolides versus sequestration of pyrrolizidine alkaloids in larvae of Oreina species (Coleoptera, Chrysomelidae). J Chem Ecol 20:555–568CrossRefGoogle Scholar
  83. Dobler S, Mardulyn P, Pasteels JM, Rowell-Rahier M (1996) Host-plant switches and the evolution of chemical defense and life history in the leaf beetle genus Oreina. Evolution 50:2373–2386CrossRefGoogle Scholar
  84. Dobler S, Daloze D, Pasteels JM (1998) Sequestration of plant compounds in a leaf beetle’s defensive secretion: cardenolides in Chrysochus. Chemoecology 8:111–118CrossRefGoogle Scholar
  85. Dobler S, Haberer W, Witte L, Hartmann T (2000) Selective sequestration of pyrrolizidine alkaloids from diverse host plants by Longitarsus flea beetles. J Chem Ecol 26:1281–1298CrossRefGoogle Scholar
  86. Dowd PF, Smith CM, Sparks TC (1983) Detoxification of plant toxins by insects. Insect Biochem 13:453–468CrossRefGoogle Scholar
  87. Duffey SS (1980) Sequestration of plant natural products by insects. Ann Rev Entomol 25:447–477CrossRefGoogle Scholar
  88. Duffey SS, Pasteels JM (1993) Transient uptake of hypericin by chrysomelids is regulated by feeding behavior. Physiol Entomol 18:119–129CrossRefGoogle Scholar
  89. Duffey SS, Scudder GGE (1972) Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly colored Hemiptera and Coleoptera. J Insect Physiol 18:63–78CrossRefGoogle Scholar
  90. Duffey SS, Scudder GGE (1974) Cardiac-glycosides in Oncopeltus fasciatus (Dallas) (Hemiptera-Lygaeidae). 1. Uptake and distribution of natural cardenolides in body. Can J Zool 52:283–290CrossRefGoogle Scholar
  91. Duffey SS, Blum MS, Isman MB, Scudder GGE (1978) Cardiac-glycosides: a physical system for their sequestration by the milkweed bug. J Insect Physiol 24:639–645CrossRefGoogle Scholar
  92. Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proc Natl Acad Sci USA 85:5992–5996PubMedCrossRefGoogle Scholar
  93. Dussourd DE, Harvis CA, Meinwald J, Eisner T (1989) Paternal allocation of sequestered plant pyrrolizidine alkaloid to eggs in the danaine butterfly, Danaus gilippus. Experientia 45:896–898PubMedCrossRefGoogle Scholar
  94. Dussourd DE, Harvis CA, Meinwald J, Eisner T (1991) Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proc Natl Acad Sci USA 88:9224–9227PubMedCrossRefGoogle Scholar
  95. Dyer LA, Bowers MD (1996) The importance of sequestered iridoid glycosides as a defense against an ant predator. J Chem Ecol 22:1527–1539CrossRefGoogle Scholar
  96. Edgar JA (1982) Pyrrolizidine alkaloids sequestered by Solomon-island danaine butterflies—the feeding preferences of the Danainae and Ithomiinae. J Zool 196:385–399CrossRefGoogle Scholar
  97. Edgar JA (1984) Parsonsieae: ancestral larval foodplants of the Danainae and Ithomiinae. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, New York, pp 91–93Google Scholar
  98. Edgar JA, Pliske TE, Culvenor CC (1974) Coevolution of danaid butterflies with their host plants. Nature 250:646–648PubMedCrossRefGoogle Scholar
  99. Egelhaaf A, Cölln K, Schmitz B, Buck M, Wink M, Schneider D (1990) Organ specific storage of dietary pyrrolizidine alkaloids in the arctiid moth Creatonotos transiens. Zeitschr Naturforsch C J Biosci 45:115–120Google Scholar
  100. Ehmke A, Witte L, Biller A, Hartmann T (1990) Sequestration, N-oxidation and transformation of plant pyrrolizidine alkaloids by the Arctiid moth Tyria jacobaeae L. Zeitschr Naturforsch C J Biosci 45:1185–1192Google Scholar
  101. Ehmke A, Rowell-Rahier M, Pasteels JM, Hartmann T (1991) Sequestration of ingested C-14 senecionine N-oxide in the exocrine defensive secretions of chrysomelid beetles. J Chem Ecol 17:2367–2379CrossRefGoogle Scholar
  102. Ehmke A, Rahier M, Pasteels JM, Theuring C, Hartmann T (1999) Sequestration, maintenance, and tissue distribution of pyrrolizidine alkaloid N-oxide in larvae of the two Oreina species. J Chem Ecol 25:2385–2395CrossRefGoogle Scholar
  103. Eisner T, Meinwald J (1995) The chemistry of sexual selection. Proc Natl Acad Sci USA 92:50–55PubMedCrossRefGoogle Scholar
  104. Eisner T, Hendry LB, Peakall DB, Meinwald J (1971) 2, 5-Dichlorophenol (from ingested herbicide) in defensive secretion of grasshopper. Science 172:277–278PubMedCrossRefGoogle Scholar
  105. Eisner T, Johanessee JS, Carrel J, Hendry LB, Meinwald J (1974) Defensive use by an insect of a plant resin. Science 184:996–999PubMedCrossRefGoogle Scholar
  106. Eisner T, Rossini C, Gonzáles A, Iyengar VK, Siegler MVS, Smedley SR (2002) Paternal investment in egg defence. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 91–116Google Scholar
  107. Engler HS, Spencer KC, Gilbert LE (2000) Insect metabolism—preventing cyanide release from leaves. Nature 406:144–145PubMedCrossRefGoogle Scholar
  108. Engler-Chaouat HS, Gilbert LE (2007) De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J Chem Ecol 33:25–42PubMedCrossRefGoogle Scholar
  109. Evans DL, Castoriades N, Badruddine H (1986) Cardenolides in the defense of Caenocoris nerii (Hemiptera). Oikos 46:325–329CrossRefGoogle Scholar
  110. Ferguson JE, Metcalf RL (1985) Cucurbitacins: plant-derived defensive compounds for diabroticites (Coleoptera: Chrysomelidae). J Chem Ecol 11:311–318CrossRefGoogle Scholar
  111. Ferguson JE, Metcalf RL, Fischer DC (1985) Disposition and fate of cucurbitacin-B in 5 species of diabroticites. J Chem Ecol 11:1307–1321CrossRefGoogle Scholar
  112. Fink LS, Brower LP (1981) Birds can overcome the cardenolide defense of monarch butterflies in Mexico. Nature 291:67–70CrossRefGoogle Scholar
  113. Fitzgerald TD, Stevens MA, Miller S, Jeffers P (2008) Aposematism in Archips cerasivoranus not linked to the sequestration of host-derived cyanide. J Chem Ecol 34:1283–1289PubMedCrossRefGoogle Scholar
  114. Fletcher BS, Bateman MA, Hart NK, Lamberton JA (1975) Identification of a fruit-fly Diptera-Tephritidae attractant in an Australian plant, Zieria smithii, as O-methyl eugenol. J Econ Entomol 68:815–816Google Scholar
  115. Fordyce JA (2000) A model without a mimic: Aristolochic acids from the California pipevine swallowtail, Battus philenor hirsuta, and its host plant, Aristolochia californica. J Chem Ecol 26:2567–2578CrossRefGoogle Scholar
  116. Fordyce JA (2001) The lethal plant defense paradox remains: inducible host-plant aristolochic acids and the growth and defense of the pipevine swallowtail. Entomol Exp Appl 100:339–346CrossRefGoogle Scholar
  117. Francis F, Lognay G, Wathelet JP, Haubruge E (2001) Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata. J Chem Ecol 27:243–256PubMedCrossRefGoogle Scholar
  118. Franke A, Rimpler H, Schneider D (1987) Iridoid glycosides in the butterfly Euphydryas cynthia (Lepidoptera, Nymphalidae). Phytochemistry 26:103–106CrossRefGoogle Scholar
  119. Frei H, Luthy J, Brauchli J, Zweifel U, Wurgler FE, Schlatter C (1992) Structure-activity-relationships of the genotoxic potencies of 16 pyrrolizidine alkaloids assayed for the induction of somatic mutation and recombination in wing cells of Drosophila melanogaster. Chem Biol Interact 83:1–22PubMedCrossRefGoogle Scholar
  120. Freitas AVL, Trigo JR, Brown KS, Witte L, Hartmann T, Barata LES (1996) Tropane and pyrrolizidine alkaloids in the ithomiines Placidula euryanassa and Miraleria cymothoe (Lepidoptera: Nymphalidae). Chemoecology 7:61–67CrossRefGoogle Scholar
  121. Frick C, Wink M (1995) Uptake and sequestration of ouabain and other cardiac glycosides in Danaus plexippus (Lepidoptera, Danaidae)—evidence for a carrier-mediated process. J Chem Ecol 21:557–575CrossRefGoogle Scholar
  122. Gardner DR, Stermitz FR (1988) Host plant utilization and iridoid glycoside sequestration by Euphydryas anicia (Lepidoptera, Nymphalidae). J Chem Ecol 14:2147–2168CrossRefGoogle Scholar
  123. Gebrehiwot L, Beuselinck PR (2001) Seasonal variations in hydrogen cyanide concentration of three Lotus species. Agron J 93:603–608Google Scholar
  124. Gfeller H, Schlunegger UP, Schaffner U, Boeve JL, Ujvary I (1995) Analysis of the chemical defense system in an insect larva by tandem mass-spectrometry. J Mass Spectrom 30:1291–1295CrossRefGoogle Scholar
  125. Ghosal S, Datta K, Singh SK, Kumar Y (1990) Telastaside, a stress-related alkaloid-conjugate from Polytela gloriosa, an insect feeding on Amaryllidaceae. J Chem Res 10:334–335Google Scholar
  126. Ghosal S, Datta K, Singh SK, Kumar Y (1991) Significance of Amaryllidaceae alkaloids in a unique plant-insect interaction. Ind J Chem Sect B 30:260–264Google Scholar
  127. Ghostin J, Habib-Jiwan JL, Rozenberg R, Daloze D, Pasteels JM, Braekman JC (2007) Triterpene saponin hemi-biosynthesis of a leaf beetle’s (Platyphora kollari) defensive secretion. Naturwissenschaften 94:601–605PubMedCrossRefGoogle Scholar
  128. Glendinning JI, Alonso A, Brower LP (1988) Behavioral and ecological interaction of foraging mice (Peromyscus melanotis) with overwintering monarch butterflies (Danaus plexippus) in Mexico. Oecologia 75:222–227CrossRefGoogle Scholar
  129. Gross J, Schumacher K, Schmidtberg H, Vilcinskas A (2008) Protected by fumigants: Beetle perfumes in antimicrobial defense. J Chem Ecol 34:179–188PubMedCrossRefGoogle Scholar
  130. Guilford T (1990) The evolution of aposematism. In: Evans DL, Schmidt JO (eds) Insect defenses. Adaptive mechanisms and strategies of prey and predators. State University of New York Press, Albany, pp 23–61Google Scholar
  131. Haberer W, Dobler S (1999) Quantitative analysis of pyrrolizidine alkaloids sequestered from diverse host plants in Longitarsus flea beetles (Coleoptera, Chrysomelidae). Chemoecology 9:169–175CrossRefGoogle Scholar
  132. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333PubMedCrossRefGoogle Scholar
  133. Harborne JB (2001) Twenty-five years of chemical ecology. Nat Prod Rep 18:361–379PubMedCrossRefGoogle Scholar
  134. Hare J, Eisner T (1993) Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatrix eggs: effect of alkaloid concentration, oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96:9–18CrossRefGoogle Scholar
  135. Hartmann T (1995) Pyrrolizidine alkaloids between plants and insects: a new chapter of an old story. Chemoecology 5:139–146CrossRefGoogle Scholar
  136. Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495CrossRefGoogle Scholar
  137. Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Top Curr Chem 209:207–243CrossRefGoogle Scholar
  138. Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Pergamon Press, Oxford, pp 155–233Google Scholar
  139. Hartmann T, Ehmke A, Eilert U, von Borstel K, Theuring C (1989) Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L. Planta 177:98–107CrossRefGoogle Scholar
  140. Hartmann T, Biller A, Witte L, Ernst L, Boppré M (1990) Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera). Biochem Syst Ecol 18:549–554CrossRefGoogle Scholar
  141. Hartmann T, Witte L, Ehmke A, Theuring C, Rowell-Rahier M, Pasteels JM (1997) Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by chrysomelid leaf beetles. Phytochemistry 45:489–497CrossRefGoogle Scholar
  142. Hartmann T, Theuring C, Schmidt J, Rahier M, Pasteels JM (1999) Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. J Insect Physiol 45:1085–1095PubMedCrossRefGoogle Scholar
  143. Hartmann T, Theuring C, Witte L, Pasteels JM (2001) Sequestration, metabolism and partial synthesis of tertiary pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem Mol Biol 31:1041–1056PubMedCrossRefGoogle Scholar
  144. Hartmann T, Theuring C, Bernays EA (2003) Are insect-synthesized retronecine esters (creatonotines) the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J Chem Ecol 29:2603–2608PubMedCrossRefGoogle Scholar
  145. Hartmann T, Theuring C, Beuerle T, Bernays EA (2004a) Phenological fate of plant-acquired pyrrolizidine alkaloids in the polyphagous arctiid Estigmene acrea. Chemoecology 14:207–216CrossRefGoogle Scholar
  146. Hartmann T, Theuring C, Beuerle T, Ernst L, Singer MS, Bernays EA (2004b) Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous arctiids and the alkaloid profiles of their larval food-plants. J Chem Ecol 30:229–254PubMedCrossRefGoogle Scholar
  147. Hartmann T, Theuring C, Beuerle T, Bernays EA, Singer MS (2005a) Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect Biochem Mol Biol 35:1083–1099PubMedCrossRefGoogle Scholar
  148. Hartmann T, Theuring C, Beuerle T, Klewer N, Schulz S, Singer MS, Bernays EA (2005b) Specific recognition, detoxification and metabolism of pyrrolizidine alkaloids by the polyphagous arctiid Estigmene acrea. Insect Biochem Mol Biol 35:391–411PubMedCrossRefGoogle Scholar
  149. Hee AKW, Tan KH (1998) Attraction of female and male Bactrocera papayae to conspecific males fed with methyl eugenol and attraction of females to male sex pheromone components. J Chem Ecol 24:753–764CrossRefGoogle Scholar
  150. Hee AKW, Tan KH (2004) Male sex pheromonal components derived from methyl eugenol in the hemolymph of the fruit fly Bactrocera papayae. J Chem Ecol 30:2127–2138PubMedCrossRefGoogle Scholar
  151. Hee AKW, Tan KH (2006) Transport of methyl eugenol-derived sex pheromonal components in the male fruit fly, Bactrocera dorsalis. Comp Biochem Physiol C Toxicol Pharmacol 143:422–428CrossRefGoogle Scholar
  152. Hegnauer R (1962) Chemotaxonomie der Pflanzen. Birkhäuser, BaselGoogle Scholar
  153. Hegnauer R (1963) Chemotaxonomie der Pflanzen. Birkhäuser, BaselGoogle Scholar
  154. Hegnauer R (1986) Chemotaxonomie der Pflanzen. Birkhäuser, BaselGoogle Scholar
  155. Hesbacher S, Giez I, Embacher G, Fiedler K, Max W, Trawoger A, Turk R, Lange OL, Proksch P (1995) Sequestration of lichen compounds by lichen-feeding members of the Arctiidae (Lepidoptera). J Chem Ecol 21:2079–2089CrossRefGoogle Scholar
  156. Hilker M, Schulz S (1994) Composition of larval secretion of Chrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant. J Chem Ecol 20:1075–1093CrossRefGoogle Scholar
  157. Holzinger F, Wink M (1996) Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): role of an amino acid substitution in the ouabain binding site of Na+,K+-ATPase. J Chem Ecol 22:1921–1937CrossRefGoogle Scholar
  158. Isman MB (1977) Dietary influence of cardenolides on larval growth and development of milkweed bug Oncopeltus fasciatus. J Insect Physiol 23:1183–1187CrossRefGoogle Scholar
  159. Isman MB, Duffey SS, Scudder GGE (1977a) Cardenolide content of some leaf-feeding and stem-feeding insects on temperate North-American milkweeds (Asclepias spp.). Can J Zool 55:1024–1028CrossRefGoogle Scholar
  160. Isman MB, Duffey SS, Scudder GGE (1977b) Variation in cardenolide content of lygaeid bugs, Oncopeltus fasciatus and Lygaeus kalmii kalmii and of their milkweed hosts (Asclepias spp) in Central California. J Chem Ecol 3:613–624CrossRefGoogle Scholar
  161. Jansen J, Allwood JW, Marsden-Edwards E, van der Putten WH, Goodacre R, van Dam NM (2009) Metabolomic analysis of the interaction between plants and herbivores. Metabolomics 5:150–161CrossRefGoogle Scholar
  162. Jensen SR (1991) Plant iridoids, their biosynthesis and distribution in angiosperms. In: Harborne JB, Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 133–158Google Scholar
  163. Jones CG, Whitman DW, Compton SJ, Silk PJ, Blum MS (1989) Reduction in diet breadth results in sequestration of plant-chemicals and increases efficacy of chemical defense in a generalist grasshopper. J Chem Ecol 15:1811–1822CrossRefGoogle Scholar
  164. Jordan AT, Jones TH, Conner WE (2005) If you’ve got it, flaunt it: ingested alkaloids affect corematal display behavior in the salt marsh moth, Estigmene acrea. J Insect Sci 5:1–6PubMedCrossRefGoogle Scholar
  165. Kazana E, Pope TW, Tibbles L, Bridges M, Pickett JA, Bones AM, Powell G, Rossiter JT (2007) The cabbage aphid: a walking mustard oil bomb. Proc R Soc Lon Ser B 274:2271–2277CrossRefGoogle Scholar
  166. Kelley KC, Johnson KS, Murray M (2002) Temporal modulation of pyrrolizidine alkaloid intake and genetic variation in performance of Utetheisa ornatrix caterpillars. J Chem Ecol 28:669–685PubMedCrossRefGoogle Scholar
  167. Kitamura Y, Tominaga Y, Ikenaga T (2004) Winter cherry bugs feed on plant tropane alkaloids and de-epoxidize scopolamine to atropine. J Chem Ecol 30:2085–2090PubMedCrossRefGoogle Scholar
  168. Kite GC, Horn JM, Romeo JT, Fellows LE, Lees DC, Scofield AM, Smith NG (1990) Alpha-homonojirimycin and 2, 5-dihydroxymethyl-3, 4-dihydroxy-pyrrolidine: alkaloidal glycosidase inhibitors in the moth Urania fulgens. Phytochemistry 29:103–105CrossRefGoogle Scholar
  169. Kite GC, Fellows LE, Lees DC, Kitchen D, Monteith GB (1991) Alkaloidal glycosidase inhibitors in nocturnal and diurnal uraniine moths and their respective foodplant genera, Endospermum and Omphalea. Biochem Syst Ecol 19:441–445CrossRefGoogle Scholar
  170. Klitzke CF, Brown KS (2000) The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology 10:99–102CrossRefGoogle Scholar
  171. Klitzke CF, Trigo JR (2000) New records of pyrrolizidine alkaloid-feeding insects. Hemiptera and Coleoptera on Senecio brasiliensis. Biochem Syst Ecol 28:313–318PubMedCrossRefGoogle Scholar
  172. Krasnoff SB, Dussourd DE (1989) Dihydropyrrolizine attractants for arctiid moths that visit plants containing pyrrolizidine alkaloids. J Chem Ecol 15:47–60CrossRefGoogle Scholar
  173. Krasnoff SB, Roelofs WL (1989) Quantitative and qualitative effects of larval diet on male scent secretions of Estigmene acrea, Phragmatobia fuliginosa, and Pyrrharctia isabella (Lepidoptera, Arctiidae). J Chem Ecol 15:1077–1093CrossRefGoogle Scholar
  174. Kuhn J, Pettersson EM, Feld BK, Burse A, Termonia A, Pasteels JM, Boland W (2004) Selective transport systems mediate sequestration of plant glucosides in leaf beetles: a molecular basis for adaptation and evolution. Proc Natl Acad Sci USA 101:13808–13813PubMedCrossRefGoogle Scholar
  175. Kuhn J, Pettersson EM, Feld BK, Nie LH, Tolzin-Banasch K, M’Rabet SM, Pasteels J, Boland W (2007) Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle Chrysomela lapponica: thioglucosides as mechanistic probes. J Chem Ecol 33:5–24PubMedCrossRefGoogle Scholar
  176. Kunert M, Søe A, Bartram S, Discher S, Tolzin-Banasch K, Nie L, David A, Pasteels JM, Boland W (2008) De novo biosynthesis versus sequestration: a network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. Insect Biochem Mol Biol 38:895–904PubMedCrossRefGoogle Scholar
  177. L’Empereur KM, Stermitz FR (1990a) Iridoid glycoside content of Euphydryas anicia (Lepidoptera, Nymphalidae) and its major hostplant, Besseya plantaginea (Scrophulariaceae), at a high-plains Colorado site. J Chem Ecol 16:187–197CrossRefGoogle Scholar
  178. L’Empereur KM, Stermitz FR (1990b) Iridoid glycoside metabolism and sequestration by Poladryas minuta (Lepidoptera, Nymphalidae) feeding on Penstemon virgatus (Scrophulariaceae). J Chem Ecol 16:1495–1506CrossRefGoogle Scholar
  179. L’Empereur KM, Li YX, Stermitz FR, Crabtree L (1989) Pyrrolizidine alkaloids from Hackelia californica and Gnophaela latipennis, an Hackelia californica-hosted arctiid moth. J Nat Prod 52:360–366CrossRefGoogle Scholar
  180. Labeyrie E, Dobler S (2004) Molecular adaptation of Chrysochus leaf beetles to toxic compounds in their food plants. Mol Biol Evol 21:218–221PubMedCrossRefGoogle Scholar
  181. Laurent P, Dooms C, Braekman J-C, Daloze D, Habib-Jiwan J-L, Rozenberg R, Termonia A, Pasteels JM (2003) Recycling plant wax constituents for chemical defense: hemi-biosynthesis of triterpene saponins from ß-amyrin in a leaf beetle. Naturwissenschaften 90:524–527PubMedCrossRefGoogle Scholar
  182. Lechtenberg M, Nahrstedt A (1999) Cyanogenic glycosides. In: Ikan R (ed) Naturally occurring glycosides. Wiley, Chichester, pp 147–191Google Scholar
  183. Lindigkeit R, Biller A, Buch M, Schiebel HM, Boppré M, Hartmann T (1997) The two faces of pyrrolizidine alkaloids: the role of the tertiary amine and its N-oxide in chemical defense of insects with acquired plant alkaloids. Eur J Biochem 245:626–636PubMedCrossRefGoogle Scholar
  184. Loaiza JCM, Cespedes CL, Beuerle T, Theuring C, Hartmann T (2007) Ceroplastes albolineatus, the first scale insect shown to sequester pyrrolizidine alkaloids from its host-plant Pittocaulon praecox. Chemoecology 17:109–115CrossRefGoogle Scholar
  185. Malcolm SB (1986) Aposematism in a soft-bodied insect—a case for kin selection. Behav Ecol Sociobiol 18:387–393CrossRefGoogle Scholar
  186. Malcolm SB (1989) Disruption of web structure and predatory behavior of a spider by plant-derived chemical defenses of an aposematic aphid. J Chem Ecol 15:1699–1716CrossRefGoogle Scholar
  187. Malcolm SB (1990) Chemical defence in chewing and sucking insect herbivores: plant-derived cardenolides in the monarch butterfly and oleander aphid. Chemoecology 1:12–21CrossRefGoogle Scholar
  188. Malcolm SB (1991) Cardenolide-mediated interactions between plants and herbivores. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic Press, San Diego, pp 251–296Google Scholar
  189. Malcolm SB (1992) Prey defence and predator foraging. In: Crawley MJ (ed) Natural enemies: the population biology of predators, parasites and diseases. Blackwell, Oxford, pp 458–475Google Scholar
  190. Martin RA, Lynch SP (1988) Cardenolide content and thin-layer chromatography profiles of monarch butterflies, Danaus plexippus L. and their larval host-plant milkweed, Asclepias asperula subsp. capricornu (Woods.) Woods. in North Central Texas. J Chem Ecol 14:295–318CrossRefGoogle Scholar
  191. Masters AR (1991) Dual role of pyrrolizidine alkaloids in nectar. J Chem Ecol 17:195–205CrossRefGoogle Scholar
  192. Matsuda K, Sugawara F (1980) Defensive secretion of chrysomelid larvae Chrysomela vigintipunctata costella (Marseul), C. populi L. and Gastrolina depressa Baly (Colepotera: Chrysomelidae). Appl Entomol Zool 15:316–320Google Scholar
  193. McLain DK, Shure DJ (1985) Host plant toxins and unpalatability of Neacoryphus bicrucis (Hemiptera: Lygaeidae). Ecol Entomol 10:291–298CrossRefGoogle Scholar
  194. Mead EW, Foderaro TA, Gardner DR, Stermitz FR (1993) Iridoid glycoside sequestration by Thessalia leanira (Lepidoptera, Nymphalidae) feeding on Castilleja integra (Scrophulariaceae). J Chem Ecol 19:1155–1166CrossRefGoogle Scholar
  195. Mebs D, Schneider M (2002) Aristolochic acid content of South-East Asian troidine swallowtails (Lepidoptera: Papilionidae) and of Aristolochia plant species (Aristolochiaceae). Chemoecology 12:11–13CrossRefGoogle Scholar
  196. Meinwald J, Meinwald YC, Wheeler JW, Eisner T, Brower LP (1966) Major components in exocrine secretion of a male butterfly (Lycorea). Science 151:583–585PubMedCrossRefGoogle Scholar
  197. Melangeli C, Rosenthal GA, Dalman DL (1997) The biochemical basis for L-canavanine tolerance by the tobacco budworm Heliothis virescens (Noctuidae). Proc Natl Acad Sci USA 94:2255–2260PubMedCrossRefGoogle Scholar
  198. Metcalf RL (1986) Coevolutionary adaptations of rootworm beetles (Coleoptera, Chrysomelidae) to cucurbitacins. J Chem Ecol 12:1109–1124CrossRefGoogle Scholar
  199. Metcalf RL, Lampman RL (1989) The chemical ecology of diabroticites and Cucurbitaceae. Experientia 45:240–247CrossRefGoogle Scholar
  200. Metcalf RL, Metcalf ER (1992) Diabroticite rootworm beetles. In: Metcalf RL, Metcalf ER (eds) Plant kairomones in insect ecology and control. Chapman & Hall, New York, pp 64–108Google Scholar
  201. Metcalf RL, Metcalf RA, Rhodes AM (1980) Cucurbitacins as kairomones for diabroticite beetles. Proc Natl Acad Sci USA 77:3769–3772PubMedCrossRefGoogle Scholar
  202. Metcalf RL, Rhodes AM, Metcalf RA, Ferguson J, Metcalf ER, Lu PY (1982) Cucurbitacin contents and diabroticite (Coleoptera, Chrysomelidae) feeding upon Cucurbita spp. Environ Entomol 11:931–937Google Scholar
  203. Mix DB, Guinaudeau H, Shamma M (1982) The aristolochic acids and aristolactams. J Nat Prod 45:657–666CrossRefGoogle Scholar
  204. Montllor CB, Bernays EA, Barbehenn RV (1990) Importance of quinolizidine alkaloids in the relationship between larvae of Uresiphita reversalis (Lepidoptera, Pyralidae) and a host plant, Genista monspessulana. J Chem Ecol 16:1853–1865CrossRefGoogle Scholar
  205. Montllor CB, Bernays EA, Cornelius ML (1991) Responses of two hymenopteran predators to surface chemistry of their prey: significance for an alkaloid-sequestering caterpillar. J Chem Ecol 17:391–399CrossRefGoogle Scholar
  206. Moore LV, Scudder GGE (1985) Selective sequestration of milkweed (Asclepias sp.) cardenolides in Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). J Chem Ecol 11:667–687CrossRefGoogle Scholar
  207. Moore LV, Scudder GGE (1986) Ouabain-resistant Na,K-ATPases and cardenolide tolerance in the large milkweed bug, Oncopeltus fasciatus. J Insect Physiol 32:27–33CrossRefGoogle Scholar
  208. Morais ABB, Brown KS (1991) Larval foodplant and other effects on troidine guild composition (Papilionidae) in southeastern Brazil. J Res Lepid 30:19–37Google Scholar
  209. Morrow PA, Bellas TE, Eisner T (1976) Eucalyptus oil in the defensive oral discharge of Australian sawfly larvae (Hymenoptera: Pergidae). Oecologia 24:193–206CrossRefGoogle Scholar
  210. Müller C (2009) Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Athalia rosae. Phytochem Rev 8:121–134CrossRefGoogle Scholar
  211. Müller C, Hilker M (2004) Ecological relevance of fecal matter in Chrysomelidae. In: Jolivet PH, Santiago-Blay JA, Schmitt M (eds) New contributions to the biology of Chrysomelidae. SPC Academic Publishers, The Hague, pp 693–705Google Scholar
  212. Müller C, Sieling N (2006) Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore—and vice versa. Chemoecology 16:191–201CrossRefGoogle Scholar
  213. Müller C, Wittstock U (2005) Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem Mol Biol 35:1189–1198PubMedCrossRefGoogle Scholar
  214. Müller C, Agerbirk N, Olsen CE, Boevé J-L, Schaffner U, Brakefield PM (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27:2505–2516PubMedCrossRefGoogle Scholar
  215. Müller C, Agerbirk N, Olsen CE (2003) Lack of sequestration of host plant glucosinolates in Pieris rapae and P. brassicae. Chemoecology 13:47–54CrossRefGoogle Scholar
  216. Nahrstedt A, Davis RH (1981) Cyanogenic glycosides in butterflies—detection and synthesis of linamarin and lotaustralin in the Heliconiinae. Planta Med 42:124–125PubMedCrossRefGoogle Scholar
  217. Nahrstedt A, Davis RH (1983) Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta, Lepidoptera). Comp Biochem Physiol B 75:65–73CrossRefGoogle Scholar
  218. Nahrstedt A, Davis RH (1986) Uptake of linamarin and lotaustralin from their foodplant by larvae of Zygaena trifolii. Phytochemistry 25:2299–2302CrossRefGoogle Scholar
  219. Narberhaus I, Theuring C, Hartmann T, Dobler S (2003) Uptake and metabolism of pyrrolizidine alkaloids in Longitarsus flea beetles (Coleoptera: Chrysomelidae) adapted and non adapted to alkaloid containing host plants. J Comp Physiol B 173:483–491PubMedCrossRefGoogle Scholar
  220. Narberhaus I, Papke U, Theuring C, Beuerle T, Hartmann T, Dobler S (2004a) Direct evidence for membrane transport of host-plant-derived pyrrolizidine alkaloid N-oxides in two leaf beetle genera. J Chem Ecol 30:2003–2022PubMedCrossRefGoogle Scholar
  221. Narberhaus I, Theuring C, Hartmann T, Dobler S (2004b) Time course of pyrrolizidine alkaloid sequestration in Longitarsus flea beetles (Coleoptera, Chrysomelidae). Chemoecology 14:17–23CrossRefGoogle Scholar
  222. Narberhaus I, Zintgraf V, Dobler S (2005) Pyrrolizidine alkaloids on three trophic levels—evidence for toxic and deterrent effects on phytophages and predators. Chemoecology 15:121–125CrossRefGoogle Scholar
  223. Nash RJ, Bell EA, Ackery PR (1992) The protective role of cycasin in Cycad-feeding Lepidoptera. Phytochemistry 31:1955–1957CrossRefGoogle Scholar
  224. Nash RJ, Rothschild M, Porter EA, Watson AA, Waigh RD, Waterman PG (1993) Calystegines in Solanum and Datura species and the deaths-head hawk-moth (Acherontia atropus). Phytochemistry 34:1281–1283CrossRefGoogle Scholar
  225. Naumann C, Hartmann T, Ober D (2002) Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloid-defended arctiid alkaloids in the moth Tyria jacobaeae. Proc Natl Acad Sci USA 99:6085–6090PubMedCrossRefGoogle Scholar
  226. Nihei K, Shibata K, Kubo I (2002) (+)-2, 3-Dehydro-10-oxo-alpha-isosparteine in Uresiphita reversalis larvae fed on Cytisus monspessulanus leaves. Phytochemistry 61:987–990PubMedCrossRefGoogle Scholar
  227. Nishida R (1995) Sequestration of plant secondary compounds by butterflies and moths. Chemoecology 5(6):127–138Google Scholar
  228. Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92PubMedCrossRefGoogle Scholar
  229. Nishida R, Fukami H (1989a) Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids. J Chem Ecol 15:2549–2563CrossRefGoogle Scholar
  230. Nishida R, Fukami H (1989b) Host plant iridoid-based chemical defense of an aphid, Acyrthosiphon nipponicus, against ladybird beetles. J Chem Ecol 15:1837–1845CrossRefGoogle Scholar
  231. Nishida R, Fukami H (1990) Sequestration of distasteful compounds by some pharmacophagous insects. J Chem Ecol 16:151–164CrossRefGoogle Scholar
  232. Nishida R, Rothschild M (1995) A cyanoglucoside stored by a Sedum-feeding apollo butterfly, Parnassius phoebus. Experientia 51:267–269CrossRefGoogle Scholar
  233. Nishida R, Fukami H, Tanaka Y, Magalhaes BP, Yokoyama M, Blumenschein A (1986) Isolation of feeding stimulants of brazilian leaf beetles (Diabrotica speciosa and Cerotoma arcuata) from the root of Ceratosanthes hilariana. Agric Biol Chem 50:2831–2836Google Scholar
  234. Nishida R, Tan KH, Serit M, Lajis NH, Sukari AM, Takahashi S, Fukami H (1988) Accumulation of phenylpropanoids in the rectal glands of males of the oriental fruit-fly, Dacus dorsalis. Experientia 44:534–536CrossRefGoogle Scholar
  235. Nishida R, Fukami H, Iriye R, Kumazawa Z (1990) Accumulation of highly toxic ericaceous diterpenoids by the geometrid moth, Arichanna gaschkevitchii. Agric Biol Chem 54:2347–2352Google Scholar
  236. Nishida R, Kim CS, Fukami H, Irie R (1991) Ideamine N-oxides—pyrrolizidine alkaloids sequestered by the danaine butterfly, Idea leuconoe. Agric Biol Chem 55:1787–1792Google Scholar
  237. Nishida R, Yokoyama M, Fukami H (1992) Sequestration of cucurbitacin analogs by New and Old World chrysomelid leaf beetles in the tribe Luperini. Chemoecology 3:19–24CrossRefGoogle Scholar
  238. Nishida R, Weintraub JD, Feeny P, Fukami H (1993) Aristolochic acids from Thottea spp (Aristolochiaceae) and the osmeterial secretions of Thottea-feeding troidine swallowtail larvae (Papilionidae). J Chem Ecol 19:1587–1594CrossRefGoogle Scholar
  239. Nishida R, Rothschild M, Mummery R (1994) A cyanoglucoside, sarmentosin, from the magpie moth, Abraxas grossulariata, Geometridae, Lepidoptera. Phytochemistry 36:37–38CrossRefGoogle Scholar
  240. Nishida R, Schulz S, Kim CS, Fukami H, Kuwahara Y, Honda K, Hayashi N (1996) Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J Chem Ecol 22:949–972CrossRefGoogle Scholar
  241. Nishida R, Kawai K, Amano T, Kuwahara Y (2004) Pharmacophagous feeding stimulant activity of neo-clerodane diterpenoids for the turnip sawfly, Athalia rosae ruficornis. Biochem Syst Ecol 32:15–25CrossRefGoogle Scholar
  242. Orr AG, Trigo JR, Witte L, Hartmann T (1996) Sequestration of pyrrolizidine alkaloids by larvae of Tellervo zoilus (Lepidoptera: Ithomiinae) and their role in the chemical protection of adults against the spider Nephila maculata (Araneidae). Chemoecology 7:68–73CrossRefGoogle Scholar
  243. Pasteels JM, Hartmann T (2004) Sequestration of pyrrolizidine alkaloids in Oreina and Platyphora leaf beetles: physiological, ecological and evolutionary aspects. In: Jolivet P, Santiago-Blay JA, Schmitt M (eds) New developments in the biology of Chrysomelidae. SPB Academic Publishing, The Hague, pp 677–691Google Scholar
  244. Pasteels JM, Rowell-Rahier M, Braekman JC, Dupont A (1983) Salicin from host plant as precursor of salicylaldehyde in defensive secretion of Chrysomeline larvae. Physiol Entomol 8:307–314CrossRefGoogle Scholar
  245. Pasteels JM, Daloze D, Rowell-Rahier M (1986) Chemical defense in chrysomelid eggs and neonate larvae. Physiol Entomol 11:29–37CrossRefGoogle Scholar
  246. Pasteels JM, Braekman J-C, Daloze D (1988) Chemical defense in the Chrysomelidae. In: Joliviet P, Petitpierre E, Hsiao TH (eds) Biology of Chrysomelidae. Kluwer, Dordrecht, pp 233–252Google Scholar
  247. Pasteels JM, Duffey S, Rowell-Rahier M (1990) Toxins in chrysomelid beetles—possible evolutionary sequence from de novo synthesis to derivation from food-plant chemicals. J Chem Ecol 16:211–222CrossRefGoogle Scholar
  248. Pasteels JM, Eggenberger F, Rowell-Rahier M, Ehmke A, Hartmann T (1992) Chemical defense in chrysomelid leaf beetles—storage of host-derived pyrrolizidine alkaloids versus de novo synthesized cardenolides. Naturwissenschaften 79:521–523CrossRefGoogle Scholar
  249. Pasteels JM, Rowell-Rahier M, Braekman J-C, Daloze D (1994) Chemical defence of adult leaf beetles updated. In: Jolivet PH, Cox ML, Petitpierre E (eds) Novel aspects of the biology of Chrysomelidae. Kluwer, Dordrecht, pp 289–301Google Scholar
  250. Pasteels JM, Dobler S, Rowell-Rahier M, Ehmke A, Hartmann T (1995) Distribution of autogenous and host-derived chemical defenses in Oreina leaf beetles (Coleoptera, Chrysomelidae). J Chem Ecol 21:1163–1179CrossRefGoogle Scholar
  251. Pasteels JM, Rowell-Rahier M, Ehmke A, Hartmann T (1996) Host-derived pyrrolizidine alkaloids in Oreina leaf beetles: physiological, ecological and evolutionary aspects. In: Jolivet PHA, Cox ML (eds) Chrysomelidae biology, ecological studies. SPB Academic Publishing, Amsterdam, pp 213–225Google Scholar
  252. Pasteels JM, Termonia A, Windsor DM, Witte L, Theuring C, Hartmann T (2001) Pyrrolizidine alkaloids and pentacyclic triterpene saponins in the defensive secretions of Platyphora leaf beetles. Chemoecology 11:113–120CrossRefGoogle Scholar
  253. Pasteels JM, Theuring C, Windsor DM, Hartmann T (2003a) Uptake and metabolism of 14C-rinderine and 14C-retronecine in leaf-beetles of the genus Platyphora and alkaloid accumulation in the exocrine defensive secretions. Chemoecology 13:55–62CrossRefGoogle Scholar
  254. Pasteels JM, Theuring C, Witte L, Hartmann T (2003b) Sequestration and metabolism of protoxic pyrrolizidine alkaloids by larvae of the leaf beetle Platyphora boucardi and their transfer via pupae into defensive secretions of adults. J Chem Ecol 29:337–355PubMedCrossRefGoogle Scholar
  255. Plasman V, Plehiers M, Braekman JC, Daloze D, de Biseau JC, Pasteels JM (2001) Chemical defense in Platyphora kollari Baly and Leptinotarsa behrensi Harold (Coleoptera: Chrysomelidae). Hypotheses on the origin and evolution of leaf beetles toxins. Chemoecology 11:107–112CrossRefGoogle Scholar
  256. Platt AP, Coppinger RP, Brower LP (1971) Demonstration of the selective advantage of mimetic Limenitis butterflies presented to caged avian predators. Evolution 25:692–701CrossRefGoogle Scholar
  257. Pliske TE (1975) Courtship behavior and use of chemical communication by males of certain species of ithomiine butterflies (Nymphalidae—Lepidoptera). Ann Entomol Soc Am 68:935–942Google Scholar
  258. Pliske TE, Eisner T (1969) Sex pheromone of queen butterfly: biology. Science 164:1170–1172PubMedCrossRefGoogle Scholar
  259. Pliske TE, Edgar JA, Culvenor CCJ (1976) The chemical basis of attraction of ithomiine butterflies to plants containing pyrrolizidine alkaloids. J Chem Ecol 2:255–262CrossRefGoogle Scholar
  260. Prieto JM, Schaffner U, Barker A, Braca A, Siciliano T, Boevé J-L (2007) Sequestration of furostanol saponins by Monophadnus sawfly larvae. J Chem Ecol 33:513–524PubMedCrossRefGoogle Scholar
  261. Prudic KL, Khera S, Solyom A, Timmermann BN (2007) Isolation, identification, and quantification of potential defensive compounds in the viceroy butterfly and its larval host-plant, Carolina willow. J Chem Ecol 33:1149–1159PubMedCrossRefGoogle Scholar
  262. Pugalenthi P, Livingstone D (1995) Cardenolides (heart poisons) in the painted grasshopper Poecilocerus pictus F (Orthoptera: Pyrgomorphidae) feeding on the milkweed Calotropis gigantea L (Asclepiadaceae). J N Y Entomol Soc 103:191–196Google Scholar
  263. Ramos C, Vanin S, Kato M (2009) Sequestration of prenylated benzoic acid and chromenes by Naupactus bipes (Coleoptera: Curculionidae) feeding on Piper gaudichaudianum (Piperaceae). Chemoecology. doi:10.1007/s00049-009-0011-0
  264. Raubenheimer D (1989) Cyanoglycoside gynocardin from Acraea horta L. (Lepidoptera, Acraeinae) possible implications for evolution of Acraeine host choice. J Chem Ecol 15:2177–2189CrossRefGoogle Scholar
  265. Rausher MD (1980) Host abundance, juvenile survival, and oviposition preference in Battus philenor. Evolution 34:342–355CrossRefGoogle Scholar
  266. Reichstein T, von Euw J, Parsons JA, Rothschild M (1968) Heart poisons in monarch butterfly—some aposematic butterflies obtain protection from cardenolides present in their food plants. Science 161:861–866PubMedCrossRefGoogle Scholar
  267. Reudler Talsma JH (2007) Costs and benefits or iridoid glycosides in multitrophic systems. Dissertation, Wageningen University, Wageningen, The Netherlands, 151 ppGoogle Scholar
  268. Rimpler H (1991) Sequestration of iridoids by insects. In: Harborne JB, Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 314–330Google Scholar
  269. Ritland DB, Brower LP (1991) The viceroy butterfly is not a batesian mimic. Nature 350:497–498CrossRefGoogle Scholar
  270. Roby MR, Stermitz FR (1984) Pyrrolizidine and pyridine monoterpene alkaloids from 2 Castilleja plant hosts of the plume moth, Platyptilia pica. J Nat Prod 47:846–853CrossRefGoogle Scholar
  271. Rothschild M (1973) Secondary plant substances and warning colouration in insects. In: van Emden HF (ed) Insects/plant relationships. Oxford University Press, Oxford, pp 59–83Google Scholar
  272. Rothschild M, Edgar JA (1978) Pyrrolizidine alkaloids from Senecio vulgaris sequestered and stored by Danaus plexippus. J Zool 186:347–349CrossRefGoogle Scholar
  273. Rothschild M, Marsh N (1978) Some peculiar aspects of danaid-plant relationships. Entomol Exp Appl 24:637–650CrossRefGoogle Scholar
  274. Rothschild M, Reichstein T (1976) Some problems associated with the storage of cardiac glycosides by insects. Nova Acta Leopold Suppl 7:507–550Google Scholar
  275. Rothschild M, Reichstein T, von Euw J, Aplin R, Harman RRM (1970a) Toxic Lepidoptera. Toxicon 8:293–299PubMedCrossRefGoogle Scholar
  276. Rothschild M, von Euw JV, Reichstein T (1970b) Cardiac glycosides in oleander aphid, Aphis nerii. J Insect Physiol 16:1141–1145PubMedCrossRefGoogle Scholar
  277. Rothschild M, von Euw J, Reichstein T (1972) Aristolochic acids stored by Zerynthia polyxena (Lepidoptera). Insect Biochem 2:334–343CrossRefGoogle Scholar
  278. Rothschild M, von Euw J, Reichstein T (1973a) Cardiac-glycosides (heart poisons) in polka-dot moth Syntomeida epilais Walk—(Ctenuchidae-Lepidoptera) with some observations on toxic qualities of Amata (=Syntomis) phegea L. Proc Roy Soc Lond Ser B 183:227–247CrossRefGoogle Scholar
  279. Rothschild M, von Euw J, Reichstein T (1973b) Cardiac-glycosides in a scale insect (Aspidiotus), a ladybird (Coccinella) and a lacewing (Chrysopa). J Entomol Ser A Physiol Behav 48:89–90Google Scholar
  280. Rothschild M, von Euw J, Reichstein T, Smith DAS, Pierre J (1975) Cardenolide storage in Danaus chrysippus (L.) with additional notes on D. plexippus (L.). Proc Roy Soc Lond Ser B 190:1–31CrossRefGoogle Scholar
  281. Rothschild M, Roman MG, Fairbairn JW (1977) Storage of cannabinoids by Arctia caja and Zonocerus elegans fed on chemically distinct strains of Cannabis sativa. Nature 266:650–651PubMedCrossRefGoogle Scholar
  282. Rothschild M, Aplin RT, Cockrum PA, Edgar JA, Fairweather P, Lees R (1979) Pyrrolizidine alkaloids in arctiid moths (Lepidoptera) with a discussion on host plant relationships and the role of these secondary plant-substances in the Arctiidae. Biol J Linn Soc 12:305–326CrossRefGoogle Scholar
  283. Rothschild M, Nash RJ, Bell EA (1986) Cycasin in the endangered butterfly Eumaeus atala florida. Phytochemistry 25:1853–1854CrossRefGoogle Scholar
  284. Rowell-Rahier M, Pasteels JM (1986) Economics of chemical defense in Chrysomelinae. J Chem Ecol 12:1189–1203CrossRefGoogle Scholar
  285. Rowell-Rahier M, Pasteels JM, Alonsomejia A, Brower LP (1995) Relative unpalatability of leaf beetles with either biosynthesized or sequestered chemical defense. Anim Behav 49:709–714CrossRefGoogle Scholar
  286. Schaffner U, Boevé JL, Gfeller H, Schlunegger UP (1994) Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J Chem Ecol 20:3233–3250CrossRefGoogle Scholar
  287. Schappert PJ, Shore JS (1999) Effects of cyanogenesis polymorphism in Turnera ulmifolia on Euptoieta hegesia and potential Anolis predators. J Chem Ecol 25:1455–1479CrossRefGoogle Scholar
  288. Scherer G, Boppré M (1997) Attraction of Gabonia and Nzerekorena to pyrrolizidine alkaloids–with descriptions of 13 new species and notes on male structural peculiarities (Insecta, Coleoptera, Chrysomelidae, Alticinae). Spixiana 20:7–38Google Scholar
  289. Schneider D, Boppré M, Schneider H, Thompson WR, Boriack CJ, Petty RL, Meinwald J (1975) Pheromone precursor and its uptake in male Danaus butterflies. J Comp Physiol 97:245–256CrossRefGoogle Scholar
  290. Schneider D, Boppré M, Zweig J, Horsley SB, Bell TW, Meinwald J, Hansen K, Diehl EW (1982) Scent organ development in Creatonotos moths—regulation by pyrrolizidine alkaloids. Science 215:1264–1265PubMedCrossRefGoogle Scholar
  291. Schneider D, Schulz S, Priesner E, Ziesmann J, Francke W (1998) Autodetection and chemistry of female and male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. J Comp Physiol A 182:153–161CrossRefGoogle Scholar
  292. Schneider D, Wink M, Sporer F, Lounibos P (2002) Cycads: their evolution, toxins, herbivores and insect pollinators. Naturwissenschaften 89:281–294PubMedCrossRefGoogle Scholar
  293. Schoonhoven LM, van Loon JJA, Dicke M (2006) Insect-plant biology. Oxford University Press, OxfordGoogle Scholar
  294. Schroeder FC, del Campo ML, Grant JB, Weibel DB, Smedley SR, Bolton KL, Meinwald J, Eisner T (2006) Pinoresinol: a lignol of plant origin serving for defense in a caterpillar. Proc Natl Acad Sci USA 103:15497–15501PubMedCrossRefGoogle Scholar
  295. Schulz S (1998) Insect-plant interactions—metabolism of plant compounds to pheromones and allomones by Lepidoptera and leaf beetles. Eur J Org Chem 1:13–20CrossRefGoogle Scholar
  296. Schulz S, Boppré M, Vane-Wright RI (1993a) Specific mixtures of secretions from male scent organs of African milkweed butterflies (Danainae). Philos Trans R Soc Lond Biol Sci 342:161–181CrossRefGoogle Scholar
  297. Schulz S, Franke W, Boppré M, Eisner T, Meinwald J (1993b) Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera: Arctiidae). Proc Natl Acad Sci USA 90:6834–6838PubMedCrossRefGoogle Scholar
  298. Schulz S, Gross J, Hilker M (1997) Origin of the defensive secretion of the leaf beetle Chrysomela lapponica. Tetrahedron 53:9203–9212CrossRefGoogle Scholar
  299. Scudder GGE, Duffey SS (1972) Cardiac-glycosides in Lygaeinae (Hemiptera-Lygaeidae). Can J Zool 50:35–42CrossRefGoogle Scholar
  300. Scudder GGE, Meredith J (1982a) Morphological basis of cardiac glycoside sequestration by Oncopeltus fasciatus (Dallas) (Hemiptera, Lygaeidae). Zoomorphology 99:87–101CrossRefGoogle Scholar
  301. Scudder GGE, Meredith J (1982b) The permeability of the midgut of three insects to cardiac glycosides. J Insect Physiol 28:689–694CrossRefGoogle Scholar
  302. Scudder GGE, Moore LV, Isman MB (1986) Sequestration of cardenolides in Oncopeltus fasciatus—morphological and physiological adaptations. J Chem Ecol 12:1171–1187CrossRefGoogle Scholar
  303. Seiber JN, Tuskes PM, Brower LP, Nelson CJ (1980) Pharmacodynamics of some individual milkweed cardenolides fed to larvae of the monarch butterfly (Danaus plexippus L). J Chem Ecol 6:321–339CrossRefGoogle Scholar
  304. Self LS, Hodgson E, Guthrie FE (1964) Metabolism of nicotine by tobacco-feeding insects. Nature 204:300–301PubMedCrossRefGoogle Scholar
  305. Shelly TE, Nishida R (2004) Larval and adult feeding on methyl eugenol and the mating success of male oriental fruit flies, Bactrocera dorsalis. Entomol Exp Appl 112:155–158CrossRefGoogle Scholar
  306. Shen SK, Dowd PF (1991) Detoxification spectrum of the cigarette beetle symbiont Symbiotaphrina kochii in culture. Entomol Exp Appl 60:51–59CrossRefGoogle Scholar
  307. Silva KL, Trigo JR (2002) Structure-activity relationships of pyrrolizidine, alkaloids in insect chemical defense against the orb-weaving spider Nephila clavipes. J Chem Ecol 28:657–668PubMedCrossRefGoogle Scholar
  308. Sime KR, Feeny PP, Haribal MM (2000) Sequestration of aristolochic acids by the pipevine swallowtail. Battus philenor (L.): evidence and ecological implications. Chemoecology 10:169–178CrossRefGoogle Scholar
  309. Smyth RR, Tallamy DW, Renwick JAA, Hoffmann MP (2002) Effects of age, sex, and dietary history on response to cucurbitacin in Acalymma vittatum. Entomol Exp Appl 104:69–78CrossRefGoogle Scholar
  310. Snook ME, Blum MS, Whitman DW, Arrendale RF, Costello CE, Harwood JS (1993) Caffeoyltartronic acid from catnip (Nepeta cataria)—a precursor for catechol in lubber grasshopper (Romalea guttata) defensive secretions. J Chem Ecol 19:1957–1966CrossRefGoogle Scholar
  311. Stermitz FR, Gardner DR, Odendaal FJ, Ehrlich PR (1986) Euphydryas anicia (Lepidoptera, Nymphalidae) utilization of iridoid glycosides from Castilleja and Besseya (Scrophulariaceae) host plants. J Chem Ecol 12:1459–1468CrossRefGoogle Scholar
  312. Stermitz FR, Gardner DR, McFarland N (1988) Iridoid glycoside sequestration by 2 aposematic Penstemon-feeding geometrid larvae. J Chem Ecol 14:435–441CrossRefGoogle Scholar
  313. Strohmeyer HH, Stamp NE, Jarzomski CM, Bowers MD (1998) Prey species and prey diet affect growth of invertebrate predators. Ecol Entomol 23:68–79CrossRefGoogle Scholar
  314. Sugeno W, Matsuda K (2002) Adult secretions of four Japanese Chrysomelinae (Coleoptera: Chrysomelidae). Appl Entomol Zool 37:191–197CrossRefGoogle Scholar
  315. Szentesi A, Wink M (1991) Fate of quinolizidine alkaloids through 3 trophic levels—Laburnum anagyroides (Leguminosae) and associated organisms. J Chem Ecol 17:1557–1573CrossRefGoogle Scholar
  316. Tallamy DW, Whittington DP, Defurio F, Fontaine DA, Gorski PM, Gothro PW (1998) Sequestered cucurbitacins and pathogenicity of Metarhizium anisopliae (Moniliales: Moniliaceae) on spotted cucumber beetle eggs and larvae (Coleoptera: Chrysomelidae). Environ Entomol 27:366–372Google Scholar
  317. Tallamy DW, Gorski PM, Burzon JK (2000) Fate of male-derived cucurbitacins in spotted cucumber beetle females. J Chem Ecol 26:413–427CrossRefGoogle Scholar
  318. Tan KH, Nishida R (2000) Mutual reproductive benefits between a wild orchid, Bulbophyllum patens, and Bactrocera fruit flies via a floral synomone. J Chem Ecol 26:533–546CrossRefGoogle Scholar
  319. Tan KH, Tan LT, Nishida R (2006) Floral phenylpropanoid cocktail and architecture of Bulbophyllum vinaceum orchid in attracting fruit flies for pollination. J Chem Ecol 32:2429–2441PubMedCrossRefGoogle Scholar
  320. Teas HJ (1967) Cycasin synthesis in Seirarctia echo (Lepidoptera) larvae fed methylazoxymethanol. Biochem Biophys Res Commun 26:686–690PubMedCrossRefGoogle Scholar
  321. Termonia A, Pasteels JM (1999) Larval chemical defence and evolution of host shifts in Chrysomela leaf beetles. Chemoecology 9:13–23CrossRefGoogle Scholar
  322. Termonia A, Hsiao TH, Pasteels JM, Milinkovitch MC (2001) Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. Proc Natl Acad Sci USA 98:3909–3914PubMedCrossRefGoogle Scholar
  323. Termonia A, Pasteels JM, Windsor DM, Milinkovitch MC (2002) Dual chemical sequestration: a key mechanism in transitions among ecological specialization. Proc R Soc Lond Ser B 269:1–6CrossRefGoogle Scholar
  324. Theodoratus DH, Bowers MD (1999) Effects of sequestered iridoid glycosides on prey choice of the prairie wolf spider, Lycosa carolinensis. J Chem Ecol 25:283–295CrossRefGoogle Scholar
  325. Trigo JR (2000) The chemistry of antipredator defense by secondary compounds in neotropical Lepidoptera: facts, perspectives and caveats. J Braz Chem Soc 11:551–561CrossRefGoogle Scholar
  326. Trigo JR (2008) Chemical ecology of Ithomiine butterflies. In: Epifano F (ed) Current trends in phytochemistry. Research Signpost, Kerala, pp 141–165Google Scholar
  327. Trigo JR, Brown AP (1990) Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1:22–29CrossRefGoogle Scholar
  328. Trigo JR, Witte L, Brown KS, Hartmann T, Barata LES (1993) Pyrrolizidine alkaloids in the arctiid moth Hyalurga syma. J Chem Ecol 19:669–679CrossRefGoogle Scholar
  329. Trigo JR, Barata LES, Brown KS (1994) Stereochemical inversion of pyrrolizidine alkaloids by Mechanitis polymnia (Lepidoptera, Nymphalidae, Ithomiinae)—specificity and evolutionary significance. J Chem Ecol 20:2883–2899CrossRefGoogle Scholar
  330. Trigo JR, Brown KS, Henriques SA, Barata LES (1996a) Qualitative patterns of pyrrolizidine alkaloids in Ithomiinae butterflies. Biochem Syst Ecol 24:181–188CrossRefGoogle Scholar
  331. Trigo JR, Brown KS, Witte L, Hartmann T, Ernst L, Barata LES (1996b) Pyrrolizidine alkaloids: different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biol J Linn Soc 58:99–123CrossRefGoogle Scholar
  332. Urzúa A, Priestap H (1985) Aristolochic acids from Battus polydamas. Biochem Syst Ecol 13:169–170Google Scholar
  333. Urzúa A, Rodriguez R, Cassels B (1987) Fate of ingested aristolochic acids in Battus archidamas. Biochem Syst Ecol 15:687–689CrossRefGoogle Scholar
  334. van Zoelen AM, van der Meijden E (1991) Alkaloid concentration of different developmental stages of the cinnabar moth (Tyria jacobaeae). Entomol Exp Appl 61:291–294CrossRefGoogle Scholar
  335. Vaughan FA (1979) Effect of gross cardiac glycoside content of seeds of common milkweed, Asclepias syriaca, on cardiac glycoside uptake by the milkweed bug Oncopeltus fasciatus. J Chem Ecol 5:89–100CrossRefGoogle Scholar
  336. Vaughan GL, Jungreis AM (1977) Insensitivity of lepidopteran tissues to ouabain—physiological mechanisms for protection from cardiac glycosides. J Insect Physiol 23:585–589CrossRefGoogle Scholar
  337. Veith M, Dettner K, Boland W (1996) Stereochemistry of an alcohol oxidase from the defensive secretion of larvae of the leaf beetle Phaedon armoraciae (Coleoptera: Chrysomelidae). Tetrahedron 52:6601–6612CrossRefGoogle Scholar
  338. von Euw J, Reichstein T (1968) Aristolochic acid-I in swallowtail butterfly Pachlioptera aristolochiae (Fabr) (Papilionidae). Israel J Chem 6:659–670Google Scholar
  339. von Euw J, Fishelson L, Parsons JA, Reichstein T, Rothschild M (1967) Cardenolides (heart poisons) in a grasshopper feeding on milkweeds. Nature 214:35–39CrossRefGoogle Scholar
  340. von Euw J, Rothschild M, Reichstein T (1971) Heart poisons (cardiac-glycosides) in lygaeid bugs Caenocoris nerii and Spilostethus pandurus. Insect Biochem 1:373–384CrossRefGoogle Scholar
  341. von Nickisch-Rosenegk E, Wink M (1993) Sequestration of pyrrolizidine alkaloids in several arctiid moths (Lepidoptera, Arctiidae). J Chem Ecol 19:1889–1903CrossRefGoogle Scholar
  342. von Nickisch-Rosenegk E, Detzel A, Wink M, Schneider D (1990a) Carrier-mediated uptake of digoxin by larvae of the cardenolide sequestering moth, Syntomeida epilais. Naturwissenschaften 77:336–338CrossRefGoogle Scholar
  343. von Nickisch-Rosenegk E, Schneider D, Wink M (1990b) Time-course of pyrrolizidine alkaloid processing in the alkaloid exploiting arctid moth, Creatonotos transiens. Zeitschr Naturforsch C J Biosci 45:881–894Google Scholar
  344. Vrieling K (2006) Chemical ecology of the cinnabar moth (Tyria jacobaeae) on a newly recorded host Senecio adonidifolius. Acta Oecol Int J Ecol 30:168–172CrossRefGoogle Scholar
  345. Weber G, Oswald S, Zöllner U (1986) Die Wirtseignung von Rapssorten unterschiedlichen Glucosinolatgehaltes für Brevicoryne brassicae (L.) und Myzus persicae (Sulzer) (Hemiptera, Aphididae). Zeitschr Pflanzenkrankh Pflanzenschutz 93:113–124Google Scholar
  346. Weintraub JD (1995) Host plant association pattern and phylogeny in the tribe Troidini. In: Scriber JM, Tsubaki Y, Lederhouse RC (eds) Swallotail butterflies: their ecology and evolutionary biology. Scientific Publishers, Gainesville, pp 307–316Google Scholar
  347. Weller SJ, Jacobson NL, Conner WE (1999) The evolution of chemical defences and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol J Linn Soc 68:557–578CrossRefGoogle Scholar
  348. Wheeler GS, Slansky F, Yu SJ (2001) Food consumption, utilization and detoxification enzyme activity of larvae of three polyphagous noctuid moth species when fed the botanical insecticide rotenone. Entomol Exp Appl 98:225–239CrossRefGoogle Scholar
  349. Williams DE, Reed RL, Kedzierski B, Dannan GA, Guengerich FP, Buhler DR (1989a) Bioactivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome-P-450 enzymes in rat-liver. Drug Metab Dispos 17:387–392PubMedGoogle Scholar
  350. Williams DE, Reed RL, Kedzierski B, Ziegler DM, Buhler DR (1989b) The role of flavin-containing monooxygenase in the N-oxidation of the pyrrolizidine alkaloid senecionine. Drug Metab Dispos 17:380–386PubMedGoogle Scholar
  351. Willinger G, Dobler S (2001) Selective sequestration of iridoid glycosides from their host plants in Longitarsus flea beetles. Biochem Syst Ecol 29:335–346PubMedCrossRefGoogle Scholar
  352. Wink M (1992) The role of quinolizidine alkaloids in plant-insect interactions. In: Bernays EA (ed) Insect-plant interactions. CRC Press, London, pp 131–166Google Scholar
  353. Wink M, Legal L (2001) Evidence for two genetically and chemically defined host races of Tyria jacobaeae (Arctiidae, Lepidoptera). Chemoecology 11:199–207CrossRefGoogle Scholar
  354. Wink M, Römer P (1986) Acquired toxicity—the advantages of specializing on alkaloid-rich lupins to Macrosiphum albifrons (Aphidae). Naturwissenschaften 73:210–212CrossRefGoogle Scholar
  355. Wink M, Schneider D (1988) Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid-exploiting moth Creatonotos. Naturwissenschaften 75:524–525CrossRefGoogle Scholar
  356. Wink M, Schneider D (1990) Fate of plant-derived secondary metabolites in 3 moth species (Syntomis mogadorensis, Syntomeida epilais, and Creatonotos transiens). J Comp Physiol B Biochem Syst Environ Physiol 160:389–400CrossRefGoogle Scholar
  357. Wink M, Witte L (1985) Quinolizidine alkaloids in Petteria ramentacea and the infesting aphids, Aphis cytisorum. Phytochemistry 24:2567–2568CrossRefGoogle Scholar
  358. Wink M, Witte L (1991) Storage of quinolizidine alkaloids in Macrosiphum albifrons and Aphis genistae (Homoptera, Aphididae). Entomol Gen 15:237–254Google Scholar
  359. Wink M, Hartmann T, Witte L, Rheinheimer J (1982) Interrelationship between quinolizidine alkaloid producing legumes and infesting insects—exploitation of the alkaloid-containing phloem sap of Cytisus scoparius by the broom aphid Aphis cytisorum. Zeitschr Naturforsch C J Biosci 37:1081–1086Google Scholar
  360. Wink M, Schneider D, Witte L (1988) Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth, Creatonotos transiens: stereochemical conversion of heliotrone. Zeitschr Naturforsch C J Biosci 43:737–741Google Scholar
  361. Wink M, Montllor CB, Bernays EA, Witte L (1991) Uresiphita reversalis (Lepidoptera, Pyralidae)—carrier-mediated uptake and sequestration of quinolizidine alkaloids obtained from the host plant Teline monspessulana. Zeitschr Naturforsch C J Biosci 46:1080–1088Google Scholar
  362. Wink M, Grimm C, Koschmieder C, Sporer F, Bergeot O (2000) Sequestration of phorbolesters by the aposematically coloured bug Pachycoris klugii (Heteroptera: Scutelleridae) feeding on Jatropha curcas (Euphorbiaceae). Chemoecology 10:179–184CrossRefGoogle Scholar
  363. Winter CK, Segall HJ (1989) Metabolism of pyrrolizidine alkaloids. In: Cheeke PR (ed) Toxicants of plant origin, alkaloids. CRC Press, Boca Raton, pp 24–40Google Scholar
  364. Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids—from plants via aphids to ladybirds. Naturwissenschaften 77:540–543CrossRefGoogle Scholar
  365. Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Nat Acad Sci USA 101:4859–4864PubMedCrossRefGoogle Scholar
  366. Wray V, Davis RH, Nahrstedt A (1983) Biosynthesis of cyanogenic glycosides in butterflies and moths—incorporation of valine and isoleucine into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera). Zeitschr Naturforsch C J Biosci 38:583–588Google Scholar
  367. Wu TS, Leu YL, Chan YY (2000) Aristolochic acids as a defensive substance for the aristolochiaceous plant-feeding swallowtail butterfly, Pachliopta aristolochiae interpositus. J Chin Chem Soc 47:221–226Google Scholar
  368. Yasui H (2001) Sequestration of host plant-derived compounds by geometrid moth, Milionia basalis, toxic to a predatory stink bug, Eocanthecona furcellata. J Chem Ecol 27:1345–1353PubMedCrossRefGoogle Scholar
  369. Yoder CA, Leonard DE, Lerner J (1976) Intestinal uptake of ouabain and digitoxin in milkweed bug, Oncopeltus fasciatus. Experientia 32:1549–1550CrossRefGoogle Scholar
  370. Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65:293–306PubMedCrossRefGoogle Scholar
  371. Zagrobelny M, Bak S, Ekstrøm CT, Olsen CE, Møller BL (2007) The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem Mol Biol 37:10–18PubMedCrossRefGoogle Scholar
  372. Zagrobelny M, Bak S, Møller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–1468Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of Chemical EcologyUniversity BielefeldBielefeldGermany

Personalised recommendations