Skip to main content
Log in

Sequestration of prenylated benzoic acid and chromenes by Naupactus bipes (Coleoptera: Curculionidae) feeding on Piper gaudichaudianum (Piperaceae)

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

The curculionid beetle Naupactus bipes (Germar, 1824) (Coleoptera: Curculionidae: Brachycerinae) has shown feeding preference for leaves of Piper gaudichaudianum, demonstrating an unexpected specificity for an insect considered to be a generalist. The leaves of P. gaudichaudianum contain the prenylated chromenes gaudichaudianic acid (4, major compound) and its methyl ester (5) in addition to a chromene (3) lacking one prenyl residue. In addition to 4, roots contain the chromone methyl ester (1) and methyl taboganate (2, major compound). Feeding on roots, larvae of N. bipes sequester exclusively the root-specific compounds 1 and 2. Adult beetles sequester the leaf-specific chromenes 3 and 4, but were found to also contain compounds 1 and 2 that are absent in leaves. Therefore, it is suggested that 1 and 2 are sequestered by larvae and can be found in the body of adult insects after long-term storage. In addition, 3 and 4, the major compounds in leaves were found to be associated with the eggs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aliabadi A, Renwick JAA, Whitman DW (2002) Sequestration of glucosinolates by harlequin bug Murgantia histrionica. J Chem Ecol 28:1749–1762

    Article  PubMed  CAS  Google Scholar 

  • Baldoqui DC, Furlan M, Kato MJ, Cavalheiro AJ, Young MCM, Bolzani VS (1999) A chromene and prenylated benzoic acid from Piper aduncum. Phytochemistry 51:899–902

    Article  PubMed  CAS  Google Scholar 

  • Batista JMJ, Lopes AA, Ambrósio DL, Regasini LO, Kato MJ, Bolzani VS, Cicarelli RMB, Furlan M (2008) Natural chromenes and chromene derivatives as potential anti-trypanosomal agents. Biol Pharm Bull 31:538–540

    Article  PubMed  CAS  Google Scholar 

  • Benevides PJC, Sartorelli P, Kato MJ (1999) Phenypropanoids and neolignans from Piper regnellii. Phytochemistry 52:339–343

    Article  CAS  Google Scholar 

  • Bloem S, Mizell RF, O’Brien CW (2002) Old traps for new weevils: new records for Curculionids (Coleoptera: Curculionidae), Brentids (Coleoptera: Brentidae) and Anthribids (Coleoptera: Anthribidae) from Jefferson Co., Florida. Fla Entomol 85:632–637

    Article  Google Scholar 

  • Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. J Chem Ecol 309:707–709

    Google Scholar 

  • Brower LP (1984) Chemical defence in butterflies. In: Vane Wright RI, Ackers PR (eds) The biology of butterflies. Academic Press, London, pp 109–134

    Google Scholar 

  • Carroll M, Berenbaum MR (2006) Lutein sequestration and furanocoumarin metabolism in parsnip webworms under different ultraviolet light regimes in the montane west. J Chem Ecol 32:277–305

    Article  PubMed  CAS  Google Scholar 

  • Chauret DC, Bernard CB, Arnason JT, Durst T (1996) Insecticidal neolignans from Piper decurrens. J Nat Prod 59:152–158

    Article  PubMed  CAS  Google Scholar 

  • Costantin MB, Sartorelli P, Limberger R, Henriques AT, Steppe M, Ferreira MJP, Ohara MT, Emerenciano VP, Kato MJ (2001) Essential oils from Piper cernuum and Piper regnellii—antimicrobial activities and analysis by GC/MS and 13C NMR. Planta Med 67:771–773

    Article  PubMed  CAS  Google Scholar 

  • Danelutte AP, Lago JHG, Young MCM, Kato MJ (2003) Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth. Phytochemistry 64:555–559

    Article  PubMed  CAS  Google Scholar 

  • Danelutte AP, Costantin MB, Delgado GR, Braz-Filho R, Kato MJ (2005) Divergence of secondary metabolism in cell suspension cultures and differentiated plants of Piper cernuum and P. crassinervium. J Braz Chem Soc 16:1425–1430

    Article  CAS  Google Scholar 

  • Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V (2004) Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc Natl Acad Sci USA 101:1904–1909

    Article  PubMed  CAS  Google Scholar 

  • Dyer LA, Dodson CD, Stireman JO, Tobler MA, Smilanich AM, Fincher RM, Letourneau DK (2003) Synergistic effects of three Piper amides on generalist and specialist herbivores. J Chem Ecol 29:2499–2514

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo RA, Sazima M (2000) Pollination biology of Piperaceae species in south-eastern Brazil. Ann Bot 85:455–460

    Article  Google Scholar 

  • Fucarino A, Millar JG, Mcelfresh JS, Colazza S (2004) Chemical and physical signals mediating conspecific and heterospecific aggregation behaviour of first instar stink bugs. J Chem Ecol 30:1257–1269

    Article  PubMed  CAS  Google Scholar 

  • Gbewonyo WR, Garnett H (1993) Structure-activity relationships of insecticidal amides from Piper guineense root. Pestic Sci 37:57–66

    Article  CAS  Google Scholar 

  • Herrera MC, Pellmyr O (2002) Plant-animal interactions: an evolutionary approach. Blackwell, Australia

    Google Scholar 

  • Hundsdoerfer AK, Tshibangu JN, Wetterauer B, Wink M (2005) Sequestration of phorbol esters by aposematic larvae of Hyles euphorbiae (Lepidoptera: Sphingidae). Chemoecology 15:261–267

    Article  CAS  Google Scholar 

  • Klitzke FA, Brown KS Jr (2000) The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology 10:99–102

    Article  CAS  Google Scholar 

  • Lago JHG, Kato MJ (2007) 3a,4a-Epoxy-2-piperidone, a new minor derivative from leaves of Piper crassinervium Kunth (Piperaceae). Nat Prod Res 21:910–914

    Article  PubMed  CAS  Google Scholar 

  • Lago JHG, Ramos CS, Casanova DCC, Morandim AA, Bergamo DCB, Cavalheiro AJ, Bolzani VS, Furlan M, Guimarães EF, Young MCM, Kato MJ (2004) Benzoic acid derivatives from Piper species and their fungitoxic activity against Cladosporium cladosporioides and C. sphaerospermum. J Nat Prod 67:1783–1788

    Article  PubMed  CAS  Google Scholar 

  • Lago JHG, Tanizaki T, Young MCM, Guimarães EF, Kato MJ (2005) Antifungal piperolides from Piper malacophyllum (Prels) C. DC. J Braz Chem Soc 16:153–156

    CAS  Google Scholar 

  • Lanteri AA, Guedes JC, Parra JRP (2002) Systematic, morphology and physiology weevils injurious for roots of citrus in São Paulo state, Brazil. Neotropical Entomol 31:561–569

    Google Scholar 

  • Le-Van N, Phan TVC (1981) An unusual m-hydroxyacetophenone and three new chromanone derivatives from Chrysothamnus viscidiflorus. Phytochemistry 20:485–487

    Article  CAS  Google Scholar 

  • Lopes AA, Baldoqui DCB, López SN, Kato MJ, Bolzani VS, Furlan M (2007) Biosynthetic origin of the isoprene units of gaudichaudianic acid in Piper gaudichaudianum (Piperaceae). Phytochemistry 68:2053–2058

    Article  PubMed  CAS  Google Scholar 

  • Martins RCC, Sartorelli P, Latorre LR, Kato MJ (2000) Phenylpropanoids and tetrahydrofuran lignans from Piper solmsianum. Phytochemistry 7:843–846

    Article  Google Scholar 

  • Martins RCC, Lago JHG, Kato MJ (2003) Trypanocidal tetrahydrofuran lignans from Piper solmsianum. Phytochemistry 64:667–670

    Article  PubMed  CAS  Google Scholar 

  • Mikich SB, Bianconi GV, Maia BHLN, Teixeira SD (2003) Attraction of the fruit-eating bat Carollia perspicillata to Piper gaudichaudianum essential oil. J Chem Ecol 29:2379–2383

    Article  PubMed  CAS  Google Scholar 

  • Miranda JE, Navickiene HMD, Nogueira-Couto RH, Bortoli SA, Kato MJ, Bolzani VS, Furlan M (2003) Susceptibility of Apis mellifera (Hymenoptera: Apidae) to pellitorine, an amide isolated from Piper tuberculatum Jacq. (Piperaceae). Apidology 34:409–415

    Article  CAS  Google Scholar 

  • Müller C, Agerbirk N, Olsen CF (2003) Lack of sequestration of host plant glucosinolates in Pieris rapae and P. brassicae. Chemoecology 13:47–54

    Article  Google Scholar 

  • Narberhaus I, Theuring C, Hartmann T, Dobler S (2004) Time course of pyrrolizidine alkaloid sequestration in longitarsus flea beetles (Coleoptera: Chrysomelidae). Chemoecology 14:17–23

    Article  CAS  Google Scholar 

  • Navickiene HMD, Alecio AC, Kato MJ, Bolzani VS, Young MC, Furlan M (2000) Antifungal amides from Piper hispidum and Piper tuberculatum. Phytochemistry 6:621–626

    Article  Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  PubMed  CAS  Google Scholar 

  • O’Brien CW, Wibmer GJ (1982) Annotated checklist of the weevils (Curculionidae sensu lato) of North America, Central America, and the West Indies (Coleoptera: Curculionoidea). Mem Am Entomol Inst 34:1–382

    Google Scholar 

  • Orjala J, Erdelmeier CAJ, Wright P, Rali T, Sticher O (1993) Two chromenes and prenylated benzoic acid derivative from Piper aduncum. Phytochemistry 34:813–818

    Article  CAS  Google Scholar 

  • Paula VF, Barbosa LCD, Demuner AJ, Piló-Veloso D, Picanço MC (2000) Synthesis and activity of new amide derivative of piperine. Pest Manag Sci 56:168–174

    Article  Google Scholar 

  • Péres VF, Saffi J, Melecchi MIS, Abad FC, Martinez MM, Oliveira EC, Assis R, Jacques EBC (2006) Optimization of pressurized liquid extraction of Piper gaudichaudianum Kunth leaves. J Chromatogr A 1105:148–153

    Article  PubMed  CAS  Google Scholar 

  • Quijano-Abril MA, Callejas-Posada R, Miranda-Esquivel DR (2006) Areas of endemism and distribution patterns for Neotropical Piper species (Piperaceae). J Biogeogr 33:1266–1278

    Article  Google Scholar 

  • Ramos CS, Vanin SA, Kato MJ (2008) Metabolism of (−)-grandisin from Piper solmsianum in Coleoptera and Lepidoptera species. Phytochemistry 69:2157–2161

    Article  PubMed  CAS  Google Scholar 

  • Roussis V, Ampofo SA, Wiemer DF (1990) A prenylated benzoic acid derivative from the leaves of Piper taboganum. Phytochemistry 29:1787–1788

    Article  CAS  Google Scholar 

  • Sartorelli P, Benevides PJC, Ellensohn RE, Rocha MVAF, Moreno PRH, Kato MJ (2001) Enantioselective conversion of p-hydroxypropenylbenzene to (+)-conocarpan in Piper regnellii. Plant Sci 6:1083–1088

    Article  Google Scholar 

  • Silva RV, Navickiene HMD, Kato MJ, Bolzani VS, Meda CI, Young MC, Furlan M (2002) Antifungal amides from Piper arboreum and Piper tuberculatum. Phytochemistry 59:521–527

    Article  Google Scholar 

  • Terreaux C, Gupta MP, Hostettmann K (1998) Antifungal benzoic acid derivatives from Piper dilatatum. Phytochemistry 49:461–464

    Article  CAS  Google Scholar 

  • Trigo JR (2000) The chemical of antipredator defence by secondary compounds in neotropical Lepidoptera: facts, perspectives and caveats. J Braz Chem Soc 6:551–561

    Google Scholar 

  • Vanin SA, Ramos CS, Guimarães EF, Kato MJ (2008) Insect feeding preferences on Piperaceae species observed in São Paulo city, Brazil. Rev Bras Entomol 52:72–77

    Article  Google Scholar 

  • Wanke S, Jaramillo MA, Borsch T, Samain MS, Quandt D, Neinhuis C (2007) Evolution of piperales-matk gene and trnk intron sequence data reveal lineage specific resolution contrast. Mol Phylogenet Evol 42:477–497

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GS, Massey LM, Southwell IA (2003) Dietary influence on terpenoids sequestered by the biological control agent Oxyops vitiosa effect of plant volatiles from different Melaleuca quinquenervia chemotypes and laboratory host species. J Chem Ecol 29:189–208

    Article  PubMed  CAS  Google Scholar 

  • Wibmer GJ, O’Brien CW (1986) Annotated checklist of the weevils (Curculionidae sensu lato) of South America (Coleoptera: Curculionidae). Mem Am Entomol Inst 39:1–563

    Google Scholar 

  • Willinger G, Dobler S (2001) Selective sequestration of iridoid glycosides from their host plants in Longitarsus flea beetles. Biochem Syst Ecol 29:335–346

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi LF, Lago JHG, Tanizaki TM, Di Mascio P, Kato MJ (2006) Antioxidant activities of prenylated hydroquinones and benzoic acid from Piper crassinervium. Phytochemistry 67:1838–1843

    Article  PubMed  CAS  Google Scholar 

  • Yasui H (2001) Sequestration of host plant-derived compounds by geometrid moth, milionia basalis, toxic to a predatory stink bug, Eocanthecona furcellata. J Chem Ecol 27:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Youngsteadt E, Nojima S, Haberlein C, Schulz S, Schal C (2008) Seed odor mediates an obligate ant–plant mutualism in Amazonian rainforests. Proc Nat Acad Sci 105:4571–4575

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Investigations were funded by grants from FAPESP and CNPq. The authors acknowledge Dr. Elsie F. Guimarães (Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil) for the identification of plant species. Special acknowledgments are due to the two anonymous referees who made important contributions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massuo J. Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, C.S., Vanin, S.A. & Kato, M.J. Sequestration of prenylated benzoic acid and chromenes by Naupactus bipes (Coleoptera: Curculionidae) feeding on Piper gaudichaudianum (Piperaceae). Chemoecology 19, 73–80 (2009). https://doi.org/10.1007/s00049-009-0011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-009-0011-0

Keywords

Navigation