Advertisement

‘A Pretence of What is Not’? A Study of Simulation(s) from the ENIAC Perspective

  • Liesbeth De MolEmail author
Artikel/Articles

Abstract

What is the significance of high-speed computation for the sciences? How far does it result in a practice of simulation which affects the sciences on a very basic level? To offer more historical context to these recurring questions, this paper revisits the roots of computer simulation in the development of the ENIAC computer and the Monte Carlo method.

With the aim of identifying more clearly what really changed (or not) in the history of science in the 1940s and 1950s due to the computer, I will emphasize the continuities with older practices and develop a two-fold argument. Firstly, one can find a diversity of practices around ENIAC which tends to be ignored if one focuses only on the ENIAC itself as the originator of Monte Carlo simulation. Following from this, I claim, secondly, that there was no simulation around ENIAC. Not only is the term ‘simulation’ not used within that context, but the analysis also shows how ‘simulation’ is an effect of three interrelated sets of different practices around the machine: (1) the mathematics which the ENIAC users employed and developed, (2) the programs, (3) the physicality of the machine. I conclude that, in the context discussed, the most important shifts in practice are about rethinking existing computational methods. This was done in view of adapting them to the high-speed and programmability of the new machine. Simulation then is but one facet of this process of adaptation, singled out by posterity to be viewed as its principal aspect.

Keywords

ENIAC Computational practice Programming Simulation 

„A pretence of what is not“? Eine Untersuchung von Simulation(en) aus der ENIAC-Perspektive

Zusammenfassung

Wie relevant sind Hochgeschwindigkeitsrechner für die Naturwissenschaften? In wie weit führen sie zu einer Praxis der Simulation, die die Naturwissenschaft auf fundamentale Art und Weise verändert? Mit dem Ziel, den historischen Kontext für die Diskussion dieser oft gestellten Fragen zu erweitern, wird in diesem Beitrag der Ursprung von Computersimulation in der Entwicklung des Electronic Numerical Integrator and Computers (ENIAC) und der Monte-Carlo-Methode wiederaufgegriffen. Um besser identifizieren zu können, was sich in der Wissenschaft der 1940er und 1950er Jahren aufgrund des Computers geändert hat, betont mein Ansatz die Kontinuität zu älteren Praktiken und stellt zwei unterschiedliche, jedoch miteinander verbundene Thesen auf. Erstens ist im Umfeld des ENIAC eine Vielfalt von Praktiken zu finden, die oft übersehen werden, wenn man den ENIAC allein als den Ursprung der Monte-Carlo-Simulation betrachtet. Zweitens werde ich argumentieren, dass es um den ENIAC herum keine Simulation gab. Nicht nur wurde der Begriff „Simulation” im ENIAC Kontext nicht verwendet, sondern diese Analyse zeigt auch, dass es sich bei der ‚Simulation‘ um eine komplexe Palette von Praktiken handelte, verschiedene Ebenen betreffend: (1) die verwendete und entwickelte Mathematik; (2) den Code; (3) die Materialität der Maschine. Meine zentrale Schlussfolgerung ist, dass sich im untersuchten Kontext die wichtigsten Verschiebungen aus dem Neudenken bereits bestehender Computermethoden ergaben. Dies geschah mit der Absicht, die Methoden der hohen Geschwindigkeit und Programmierbarkeit der Maschine anzupassen. Simulation ist somit nur eine der vielen Facetten in diesem Prozess der Anpassung, die erst im nach hinein herausgehoben wurde, um als sein wichtigster Aspekt zu gelten.

Schlüsselwörter

ENIAC Rechenpraxis Programmierung Simulation 

Notes

References

  1. Alt, Franz (1972). Archaeology of Computers. Reminiscences, 1945–1947. Communications of the Association for Computing Machinery (15): 693–694.Google Scholar
  2. Alt, Franz (2006). Dr. Franz Alt. Oral history by Atsushi Akera, January 23 and February 2, 2006. In: Proceeding Association for Computing Machinery Oral History interviews, interview nr. 1, New York: Association for Computing Machinery.Google Scholar
  3. Archibald, Thomas, Della Dumbaugh and Deborah Kent (2014). U.S. mathematicians in World War I. In: David Aubin and Catherine Goldstein (eds.). The War of Guns and Mathematics. Mathematical Practices and Communities in France and its Western Allies around World War I. Providence: American Mathematical Society: 229–271.Google Scholar
  4. Aspray, William (1990). John von Neumann and the Origins of Modern Computing. Boston: MIT Press.Google Scholar
  5. Bartik, Jean J. (1973). Interview with Jean J. Bartik (1924-) and Frances E. (Betty) Snyder Holberton (1917–2001) by Henri S. Tropp. Computer Oral History Collection, 1969–1973, 1977, Archives Center, National Museum of American History.Google Scholar
  6. Borrelli, Arianna (2019). Program FAKE: Monte Carlo Simulations as Tools of Theory in Early High Energy Physics. NTM this special issue.  https://doi.org/10.1007/s00048-019-00223-w CrossRefGoogle Scholar
  7. Bullynck, Maarten and Liesbeth De Mol (2010). Setting-up Early Computer Programs: D. H. Lehmer’s ENIAC Computation. Archive for Mathematical Logic (49): 123–146.Google Scholar
  8. Bullynck, Maarten and De Mol, Liesbeth (2019). The History (of the History) of Computing and its Relation to the History (of the History) of Mathematics. In: Maarten Bullynck, Liesbeth De Mol and Marie-José Durand-Richard (eds.). Mathematics and Machines, special issue of Revue de Synthèse, 2019.Google Scholar
  9. Bush, Vannevar, James B. Conant and Warren Weaver (1946a). Mathematical Studies Relating to Military Physical Research, National Defense Research Committee, Summary Technical Report of the Applied Mathematics Panel, NDRC, vol. 1, AD221604.Google Scholar
  10. Bush, Vannevar, James B. Conant and Warren Weaver (1946b). Probability and Statistical Studies in Warfare Analysis, National Defense Research Committee, Summary Technical Report of the Applied Mathematics Panel, NDRC, vol. 3.Google Scholar
  11. Campbell-Kelly, Martin, Mary Croarken, Raymond Flood and Eleanor Robson (2003). The History of Mathematical Tables. From Sumer to Spreadsheets. Oxford: Oxford University Press.Google Scholar
  12. Curry, Haskell B. (1929) An Analysis of Logical Substitution, American Journal of Mathematics (51): 363–384.Google Scholar
  13. Curry, Haskell B. (1942). Mathematical Teaching and National Defense, The School Review (50): 337–346.Google Scholar
  14. Curry, Haskell B. (1943). The Heaviside Operational Calculus. The American Mathematical Monthly (50): 365–379.Google Scholar
  15. Curry, Haskell B. (1944). The Method of Steepest Descent for Non-linear Problems, Quarterly of Applied Mathematics (2): 258–261.Google Scholar
  16. Curry, Haskell B. and Isaac J. Schoenberg (1947). On Spline Distributions and Their Limits: The Polya Distribution Functions. Bulletin of the American Mathematical Society (53): 1114.Google Scholar
  17. Curry, Haskell B. and Isaac J. Schoenberg (1966). On Polya Frequency Functions IV: The Fundamental Spline Functions and Their Limits. Journal d’Analyse Mathematique (17): 71–107.Google Scholar
  18. Curry, Haskell B. and Willa A. Wyatt (1946). A Study of Inverse Interpolation of the ENIAC. Technical Report 615, Ballistic Research Laboratories, Aberdeen Proving Ground.Google Scholar
  19. De Mol, Liesbeth (2015). Some Reflections on Mathematics and Its Relation to Computer Science, in: Andy Adamatzky (ed.). Automata, Universality, Computation. Tribute to Maurice Margenstern. Berlin: Springer: 75–101.Google Scholar
  20. De Mol, Liesbeth, Martin Carlé and Maarten Bullynck (2015). Haskell Before Haskell: an Alternative Lesson in Practical Logics of the ENIAC. Journal of Logic and Computation (25): 1011–1046.Google Scholar
  21. De Mol, Liesbeth and Marie-José Durand-Richard (forthcoming). Calculating Machines and Numerical Tables—a Reciprocal History. In: Dominique Tournès (ed.). The History of Numerical Tables. Berlin: Springer.Google Scholar
  22. Duran, Juan (2018). Computer Simulations in Science and Engineering. Concepts—Practices—Perspectives. Dordrecht: Springer.Google Scholar
  23. Ensmenger, Nathan (2016). The Multiple Meanings of a Flowchart. Information and Culture: A Journal of History (51): 321–351.Google Scholar
  24. Forman, Paul (2007). The Primacy of Science in Modernity, of Technology in Postmodernity, and of Ideology in the History of Technology. History and Technology (23): 1–152.Google Scholar
  25. Fritz, Barkley (1994). ENIAC—a Problem Solver. IEEE Annals of the History of Computing (16): 25–45.Google Scholar
  26. Galison, Peter (1997). Image and Logic. A Material Culture of Microphysics. Chicago: University of Chicago Press.Google Scholar
  27. Galison, Peter (2011) [1996]. Computer Simulations and the Trading Zone. In: Gabriele Gramelsberger (ed.). From Science to Computational Science. Zurich: Diaphanes: 118–157.Google Scholar
  28. Goldstine, Hermann H. and John von Neumann (1947–1948). Planning and Coding of Problems for an Electronic Computing Instrument, Vol. 2 of Report on the Mathematical and Logical Aspects of an Electronic Computing Instrument, part I,II and III. Report prepared for U. S. Army Ord. Dept. under Contract W‑36-034-ORD-7481, 1947–1948.Google Scholar
  29. Grier, David A. (2005). When Computers Were Human. Princeton: Princeton University Press.Google Scholar
  30. Grubbs, F. E. (1950). Sample Criteria for Testing Outlying Observations. The Annals of Mathematical Statistics (21): 27–58.Google Scholar
  31. Haigh, Thomas, Mark Priestley and Crispin Rope (2016). ENIAC in Action. Making and Remaking the Modern Computer. Boston: MIT Press.Google Scholar
  32. Hartmann, Stephan (1996). The World as a Process. In: Rainer Hegselmann, Ulrich Mueller, and Klaus G. Troitzsch (eds.). Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View. Dordrecht: Springer: 77–100.Google Scholar
  33. Hartree, David R. (1946). The ENIAC, An Electronic Computing Machine. Nature (158): 500–506.Google Scholar
  34. Hashagen, Ulf (2009). Die Habilitation von John von Neumann an der Friedrich-Wilhelms-Universität in Berlin: Urteile über einen ungarisch-jüdischen Mathematiker in Deutschland im Jahr 1927. Historia Mathematica (37): 242–280.Google Scholar
  35. Hashagen, Ulf (2013). The Computation of Nature, or: Does the Computer Drive Science and Technology? In: P. Bonizzoni P., V. Brattka V. and B. Löwe (eds.). The Nature of Computation. Logic, Algorithms, Applications. CiE 2013. Berlin: Springer: 263–270.Google Scholar
  36. Hoff, Frederick C. (1943). Ordnance—the Backbone of Warfare. Alumni Review. California Institute of Technology (6): 18−19.Google Scholar
  37. Humphreys, Paul W. (2004). Extending Ourselves: Computational Science, Empiricism, and Scientific Method. Oxford: Oxford University Press.Google Scholar
  38. Ince, Darrel C., Leslie Hatton and John Graham-Cumming (2012). The Case for Open Computer Programs, Nature (482): 485–488.Google Scholar
  39. Kistiakowsky, George B. (1980). Reminscences of Wartime Los Alamos. In: L. Badash, J. O. Hirschfelder and H. P. Broida. Reminiscences of Los Alamos 1943–1945. Dordrecht: Reidel Publishing Company.Google Scholar
  40. Kittler, Friedrich A. (1993). Es gibt keine Software. In: Friedrich Kittler (ed.). Draculas Vermächtnis. Technische Schriften. Berlin: Reclam: 225–242.Google Scholar
  41. Lehmer, Derrick H. (1945). A Photo-Electric Instrument for Rapid Bomb-Fall Analysis and Damage Prediction, D. H. Lehmer, OSRD 5641, OEMsr-817, AMP Report 190.1R, University of California, May 1945. AMP-804.4‑M.Google Scholar
  42. Lehmer, Derrick H. (1951). Mathematical Methods in Large Scale Computing Units, Proceedings of Second Symposium on Large-Scale Digital Calculating Machinery, 1949, Cambridge, MA: Harvard University Press: 141–146.Google Scholar
  43. Lehmer, Derrick H. (1956). High-speed Computing Devices and Their Applications. In: Edwin F. Beckenbach (ed.). Modern Mathematics for the Engineer. New York: McGraw-Hill: 480–497.Google Scholar
  44. Lehmer, Derrick H. (1969). Computer Technology Applied to the Theory of Numbers. Studies in Number Theory (6): 117–151.Google Scholar
  45. Lehmer, Derrick H. (1974). The Influence of Computing on Mathematical Research and Education. In: Joseph Pierre LaSalle (ed.). The Influence of Computing on Mathematical Research and Education. Providence: American Mathematical Society: 3–12.Google Scholar
  46. Lehmer, Derrick H. (1977). Mechanized Mathematics. Bulletin of the American Mathematical Society (72): 739−750.Google Scholar
  47. Lotkin, Max and Haskell B. Curry. (1946). A Study of Fourth Order Interpolation on the ENIAC, BRL report 613.Google Scholar
  48. McCullogh, Warren and Walter Pitts (1943). A Logical Calculus for the Ideas Immanent in Nervous Activity, Bulletin of Mathematical Biophysics (5): 115–133.Google Scholar
  49. McLuhan, Marshall and Quentin Fiore (1967). The Medium is the Massage: An Inventory of Effects. New York: Bantam.Google Scholar
  50. Metropolis, Nicholas (1987). The Beginning of the Monte Carlo Method. Los Alamos Science (15) Special Issue: Stanislaw Ulam 1909–1984: 125–130.Google Scholar
  51. Neukom, Hans (2006). The Second Life of ENIAC. IEEE Annals of the History of Computing (28): 4–16.Google Scholar
  52. von Neumann, John (1944). Proposal and Analysis of a New Numerical Method for the Treatment of Hydrodynamical Shock Problems. AMP Report 108.1R, Institute for Advanced Study, Mar. 20, 1944.Google Scholar
  53. von Neumann, John (1947). The Mathematician. In: Heywood, R.B. (ed.). The Works of the Mind. Chicago: University of Chicago Press: 180–196.Google Scholar
  54. von Neumann, John (1948). Electronic Methods of Computation. Bulletin of the American Academy of Arts and Sciences (1): 2–4.Google Scholar
  55. von Neumann, John (1951). Various Techniques Used in Connection with Random Digits. Summary written by G. E. Forsythen. National Bureau of Standards Applied Mathematics Series (12): 36–38.Google Scholar
  56. von Neumann, John (1958). The Computer and the Brain, New Haven: Yale University Press.Google Scholar
  57. von Neumann, John (1966). The General and Logical Theory of Automata, edited by Arthur Burks, Urbana: University of Illinois Press.Google Scholar
  58. von Neumann, John and Goldstine Hermann H. (1947). Numerical Inverting of Matrices of High Order. Bulletin of the American Mathematical Society (53): 1021–1099.Google Scholar
  59. OED online (2019). Simulation. Oxford: Oxford University Press. https://www-1oed-1com-10066f0ya024d.erf.sbb.spk-berlin.de/view/Entry/180009?redirectedFrom=simulation& (24.08.2019).Google Scholar
  60. Patterson, G.W. (1957). Review of “The Logic of Program Composition by H.B. Curry”. Journal for Symbolic Logic (22): 102–103.Google Scholar
  61. Polachek, Harry (1997). Before the ENIAC. IEEE Annals for the History of Computing (19): 25–30.Google Scholar
  62. Ramunni, Girolamo (1989). La Physique du Calcul. Histoire de l’Ordinateur. Paris: Hachette.Google Scholar
  63. Reitwiesner, George W. (1950). An ENIAC Determination of π and e to more than 2000 Decimal Places. Mathematical Tables and Other Aids to Computation (4): 11−15.Google Scholar
  64. Rowe, David (2018). A Richer Picture of Mathematics. The Göttingen Tradition and Beyond. Berlin: Springer.Google Scholar
  65. Schoenberg, Isaac J. (1988). A Brief Account of My Life and Work. In: C. De Boor (ed.). I.J. Schoenberg. Selected Paper. Basel: Birkhäuser, vol. 1: 1–10.Google Scholar
  66. Seldin, Jonathan P. (2005). Haskell B. Curry (1900–1982). Dictionary of Modern American Philosophers: Bristol Thoemmes Press.Google Scholar
  67. Seldin, Jonathan P. (2012). Curry’s Work on Computers in the Early Days of Computing. Canadian Society for History and Philosophy of Mathematics. Proceedings of the 38 th Annual Meeting (25): 149–153.Google Scholar
  68. Stibitz, George R. (1945). A Talk on Relay Computers. AMP Memo 171.1M, National Defense Research Committee.Google Scholar
  69. Swade, Doron (2003). The ’Unerring Certainty of Mechanical Agency’: Machines and Table Making in the Nineteenth Century. In: M. Campbell-Kelly, M. Croarken, R. Flood and E. Robson (eds.). The History of Mathematical Tables. From Sumer to Spreadsheets. Oxford: Oxford University Press: 145–174.Google Scholar
  70. Tedre, Matti (2015). The Science of Computing: Shaping a Discipline. London: Routledge.Google Scholar
  71. Ulam, Stanislav and John von Neumann (1980). The Interaction of Mathematics and Computing, 1980. In: Jack Howlett, Nicholas Metropolis and Gian-Carlo Rota (eds.). A History of Computing in the Twentieth Century. New York: Academia Press: 93–99.Google Scholar
  72. Varenne, Franck (2007). Du Modèle à la Simulation Informatique. Vrin: Paris.Google Scholar
  73. Varenne, Franck (2018). From Models to Simulations. London: Routledge.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8163 Savoirs, Textes, LangageUniversité de LilleFrance

Personalised recommendations