Advertisement

Implicit Changes of Model Uses in Astrophysics, Illustrated on the Paris-Durham Shock Model

  • Sibylle AnderlEmail author
Artikel/Articles

Abstract

This paper explores the epistemic status of models and simulations between theory, on the one hand, and observations, on the other. In particular, I will argue that the interpretation of an essentially invariant astrophysical model structure can change substantially over time. I will illustrate this claim using as an example the first 20 years (1985–2004) of development of the Paris-Durham shock code—a numerical model of slow interstellar shock waves (i.e. a disturbance of the medium that travel faster than the local speed of sound). I will show that the model’s interpretation and, in particular, its underlying representational ideal—the modeler’s (often implicit) goal governing the development and the use of the model—changed notably during this period. Whereas the code was originally used in a purely exploratory fashion, it was later taken to represent and encompass the target phenomenon as completely as possible. It is noteworthy that during this transition the model’s change of epistemic status was never explicitly acknowledged or in any way articulated. However, the impetus for the change can, I claim, be found in the role that observational data came to play in the later publications.

Keywords

Astrophysics Scientific modeling Simulations Interstellar shocks Coding 

Implizite Veränderungen der Verwendung astrophysikalischer Modelle am Beispiel des Paris-Durham-Modells für Stoßwellen

Zusammenfassung

Dieser Artikel untersucht den epistemischen Status von Modellen und Simulationen zwischen Theorie auf der einen Seite und Beobachtungsdaten auf der anderen. Insbesondere werde ich dafür argumentieren, dass sich die Interpretation einer im Kern unveränderlichen astrophysikalischen Modellstruktur mit der Zeit grundlegend ändert. Diese These soll anhand des Beispiels der ersten 20 Jahre (1985–2004) der Entwicklung des Paris-Durham Codes für Stoßwellen (Störungen eines Mediums, die sich schneller als die lokale Schallgeschwindigkeit fortbewegen) illustriert werden. Dabei wird sich zeigen, dass die Interpretation des Modells und insbesondere das dieser zugrunde liegende repräsentationale Ideal – das für den Modellierer (oft implizit vorliegende) bei der Entwicklung und Verwendung des Modells leitende Ziel – sich in diesem Beispiel bedeutend ändert. Während der Code ursprünglich auf rein explorative Weise genutzt wurde, wurde er später als möglichst vollständige Repräsentation und Verkörperung des modellierten Zielphänomens verstanden. Es ist bemerkenswert, dass diese Änderung des epistemischen Status des Modells nie explizit eingeräumt oder artikuliert wurde. Der Impuls für diese Veränderung, so meine Behauptung, kann in der Rolle gesehen werden, die Beobachtungsdaten in den späteren Publikationen spielen.

Schlüsselwörter

Astrophysik Wissenschaftliche Modellierung Simulationen Interstellare Stoßwellen Programmierung 

Notes

References

  1. Aannestad, Per A. and George B. Field 1973. Hot H2 and Interstellar Shocks. Astrophysical Journal (186): L29–L32.  https://doi.org/10.1086/181350 CrossRefGoogle Scholar
  2. Aarseth, Sverre J. 1963. Dynamical Evolution of Clusters of Galaxies, I. Monthly Notices of the Royal Astronomical Society (126): 223.  https://doi.org/10.1093/mnras/126.3.223 CrossRefGoogle Scholar
  3. Anderl, Sibylle 2016. Astronomy and Astrophysics. In: Paul Humphreys (ed.). The Oxford Handbook of Philosophy of Science. Oxford: Oxford University Press: 652–670.Google Scholar
  4. Arabatzis, Theodore 2017. What’s in It for the Historian of Science? Reflections on the Value of Philosophy of Science for History of Science. International Studies in the Philosophy of Science (31): 69–82.  https://doi.org/10.1080/02698595.2017.1370924 CrossRefGoogle Scholar
  5. Arnett, David 1967. Mass Dependence in Gravitational Collapse of Stellar Cores. Canadian Journal of Physics (45): 1621.  https://doi.org/10.1139/p67-126 CrossRefGoogle Scholar
  6. Astronomy and Astrophysics Panel Reports 1991. Computing and Data Processing. Washington, D.C.: National Research Council National Academy Press: 257–282.Google Scholar
  7. Bailer-Jones, Daniela M. 2000. Modelling Extended Extragalactic Sources. Studies in History and Philosophy of Modern Physics (31): 49–74.  https://doi.org/10.1016/S1355-2198(99)00028-3 CrossRefGoogle Scholar
  8. Chièze, Jean-Pierre, Guillaume Pineau des Forêts and David R. Flower 1998. Temporal Evolution of MHD Shocks in the Interstellar Medium. Monthly Notices of the Royal Astronomical Society (295): 672–682.  https://doi.org/10.1046/j.1365-8711.1998.01391.x CrossRefGoogle Scholar
  9. Chu, C. K. and R. A. Gross 1969. Shock Waves in Plasma. In: A. Simon and W. B. Thomson (eds.). Advances in Plasma Sciences (2) New York: Wiley: 139.Google Scholar
  10. DeVorkin, David and Spencer Weart 1977. Interview of Martin Schwarzschild by D. DeVorkin and S. Weart on 1977 December 16, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/4870-3 (19.08.2019).Google Scholar
  11. Draine, Bruce T. 1980. Interstellar Shock Waves with Magnetic Precursors. Astrophysical Journal (241): 1021–1038.  https://doi.org/10.1086/158416 CrossRefGoogle Scholar
  12. Draine, Bruce T. and Wayne G. Roberge 1982. A Model for the Intense Molecular Line Emission from OMC‑1. Astrophysical Journal (259): L91–L96.  https://doi.org/10.1086/183854 CrossRefGoogle Scholar
  13. Draine, Bruce T., Wayne G. Roberge and Alexander Dalgarno 1983. Magnetohydrodynamic Shock Waves in Molecular Clouds. Astrophysical Journal (264): 485–507.  https://doi.org/10.1086/160617 CrossRefGoogle Scholar
  14. Elliot, J. L., E. W. Dunham, R. L. Baron, A. W. Watts, S. E. Kruse and W. C. Rose 1989. Image Quality on the Kuiper Airborne Observatory. I—Results of the First Flight Series. Astronomical Society of the Pacific (101): 737–764.  https://doi.org/10.1086/132498 CrossRefGoogle Scholar
  15. Field, David, Paul W. May, Guillaume Pineau des Forêts and David R. Flower 1997. Sputtering of the Refractory Cores of Interstellar Grains. Monthly Notices of the Royal Astronomical Society (285): 839–846.  https://doi.org/10.1093/mnras/285.4.839 CrossRefGoogle Scholar
  16. Field, George B., J. D. G: Rather, P. A. Aannestad and S. A. Orszag 1968. Hydromagnetic Shock Waves and Their Infrared Emission in HI Regions. Astrophysical Journal (151): 953–975.  https://doi.org/10.1086/149496 CrossRefGoogle Scholar
  17. Flower, David R., Guillaume Pineau des Forêts and Tom W. Hartquist 1985. Theoretical Studies of Interstellar Molecular Shocks—I. General Formulation and Effects of the Ion-molecule Chemistry. Monthly Notices of the Royal Astronomical Society (216): 775–794.  https://doi.org/10.1093/mnras/216.4.775 CrossRefGoogle Scholar
  18. Flower, David R., Guillaume Pineau des Forêts and Malcolm C. Walmsley 1995. Hot Shocked Ammonia Towards SGR B2. Astronomy & Astrophysics 294: 815–824.Google Scholar
  19. Flower, David R., Guillaume Pineau des Forêts, D. Field and Paul W. May 1996. The Structure of MHD Shocks in Molecular Outflows: Grain Sputtering and SiO Formation. Monthly Notices of the Royal Astronomical Society (280): 447–457.  https://doi.org/10.1093/mnras/280.2.447 CrossRefGoogle Scholar
  20. Flower, David R. and Guillaume Pineau des Forêts 1999. H2 Emission from Shocks in Molecular Outflows: The Significance of Departures from a Stationary State. Monthly Notices of the Royal Astronomical Society (308): 271–280.  https://doi.org/10.1046/j.1365-8711.1999.02729.x CrossRefGoogle Scholar
  21. Flower, David R. and Guillaume Pineau des Forêts 2003. The Influence of Grains on the Propagation and Structure of C‑type Shock Waves in Interstellar Molecular Clouds. Monthly Notices of the Royal Astronomical Society (343): 390–400.  https://doi.org/10.1046/j.1365-8711.2003.06716.x CrossRefGoogle Scholar
  22. Flower, David R., Jacques Le Bourlot, Guillaume Pineau des Forêts and Sylvie Cabrit 2003. The Contributions of J‑type Shocks to the H2 Emission from Molecular outflow Sources. Monthly Notices of the Royal Astronomical Society (341): 70–80.  https://doi.org/10.1046/j.1365-8711.2003.06463.x CrossRefGoogle Scholar
  23. Flower, David R., L. Heck, Guillaume Pineau des Forêts and Tom J. Millar 1990. The Erosion of PAH Molecules within Shocks in Dark Clouds. Monthly Notices of the Royal Astronomical Society (242): 512–516.  https://doi.org/10.1093/mnras/242.4.512 CrossRefGoogle Scholar
  24. Flower, David R. and Guillaume Pineau des Forêts 1994. Grain/Mantle Erosion in Magnetohydrodynamic Shocks. Astronomy & Astrophysics (294): 815–824.  https://doi.org/10.1093/mnras/268.3.724 CrossRefGoogle Scholar
  25. Flower, David R. and Guillaume Pineau des Forêts 1995. Non-thermal Sputtering of Interstellar Grains in Magnetohydrodynamic Shocks. Monthly Notices of the Royal Astronomical Society (275): 1049–1056.  https://doi.org/10.1093/mnras/275.4.1049 CrossRefGoogle Scholar
  26. Flower, David R. and Guillaume Pineau des Forêts 1998. C‑type Shocks in the Interstellar Medium: Profiles of CH+ and CH Absorption Lines. Monthly Notices of the Royal Astronomical Society (297): 1182–1188.  https://doi.org/10.1046/j.1365-8711.1998.01574.x CrossRefGoogle Scholar
  27. Gelfert, Axel 2018. Models in Search of Targets: Exploratory Modelling and the Case of Turing Patterns. Philosophy of Science (9): 245–269.  https://doi.org/10.1007/978-3-319-72577-2_14 CrossRefGoogle Scholar
  28. Giannini, Teresa, Caroly McCoey, Alessio Caratti o Garatti, Brunella Nisini, Dario Lorenzetti and David R. Flower 2004. On the Excitation of the Infrared Knots Along Protostellar Jets. Astronomy & Astrophysics (419): 999–1014.  https://doi.org/10.1051/0004-6361:20040087 Google Scholar
  29. Gingerich, Owen 1978. Interview of Rudolf Kippenhahn by O. Gingerich on 1978 June 18, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA. www.aip.org/history-programs/niels-bohr-library/oral-histories/5091 (19.08.2019).Google Scholar
  30. Graßhoff, Gerd 1998. Modelling the Astrophysical Object SS433—Methodology of Model Construction by a Research Collective. Philosophia Naturalis 35: 161–199. http://hdl.handle.net/11858/00-001M-0000-002A-AB14-F Google Scholar
  31. Hacking, Ian 1989. Extragalactic Reality: The Case of Gravitational Lensing. Philosophy of Science (56): 555–581.  https://doi.org/10.1086/289514 CrossRefGoogle Scholar
  32. Hollenbach, David and Christopher F. McKee 1979. Molecule Formation and Infrared Emission in Fast Interstellar Shocks. I Physical Processes. Astrophysical Journal Supplement (41): 555–592.  https://doi.org/10.1086/190631 CrossRefGoogle Scholar
  33. Knuuttila, Tarja and Martina Merz 2009. An Objectual Approach to Scientific Understanding: The Case of Models. In: Hans W. de Regt, Sabina Leonelli and Kai Eigner (eds.). Scientific Understanding—Philosophical Perspectives. Pittsburgh: University of Pittsburgh Press: 146–168.CrossRefGoogle Scholar
  34. Krehl, Peter O. K. 2007. History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference. Berlin: Springer.Google Scholar
  35. Larson, Richard B. 1969. Numerical Calculations of the Dynamics of Collapsing Proto-star. Monthly Notices of the Royal Astronomical Society (145): 271.  https://doi.org/10.1093/mnras/145.3.271 CrossRefGoogle Scholar
  36. Le Bourlot, Jacques, Guillaume Pineau des Forêts, David R. Flower and Sylvie Cabrit 2002. New Determinations of the Critical Velocities of C‑type Shock Waves in Dense Molecular Clouds: Application to the Outflow Source in Orion. Monthly Notices of the Royal Astronomical Society (332): 985–993.  https://doi.org/10.1046/j.1365-8711.2002.05373.x CrossRefGoogle Scholar
  37. May, Paul W., Guillaume Pineau des Forêts, David R. Flower, D. Field, N. L. Allan and John A. Purton 2000. Sputtering of Grains in C‑type Shocks. Monthly Notices of the Royal Astronomical Society (318): 809–816.  https://doi.org/10.1046/j.1365-8711.2000.03796.x Google Scholar
  38. Mullan, Dermott J. 1969. The Structure of Hydromagnetic Shocks in Regions of Very Low Ionization. PhD thesis. University of Maryland.Google Scholar
  39. Mullan, Dermott J. 1971. The Structure of Transverse Hydromagnetic Shocks in Regions of Low Ionization. Monthly Notices of the Royal Astronomical Society (153): 145–170.  https://doi.org/10.1093/mnras/153.2.145 CrossRefGoogle Scholar
  40. Naur, Peter and Brian Randell 1969. Software Engineering. Report on a Conference Sponsored by the NATO Science Committee. NATO Scientific Affairs Division, Brussels, BelgiumGoogle Scholar
  41. Neugebauer G., C. A. Beichman, B. T. Soifer, H. H. Aumann, T. J. Chester, T. N. Gautier, F. C. Gillett, M. G. Hauser, J. R. Houck, C. J. Lonsdale, F. J. Low and E. T. Young 1984. Early Results from the Infrared Astronomical Satellite. Science 224 (4644): 14–21.CrossRefGoogle Scholar
  42. von Neumann, John and Robert D. Richtmyer 1950. A Method for the Numerical Calculation of Hydrodynamic Shocks. Journal of Applied Physics (21): 232–237.  https://doi.org/10.1063/1.1699639 CrossRefGoogle Scholar
  43. Norman, Michael L. 1997. Computational Astrophysics: The “New Astronomy” for the 21st Century. In: D. A. Clarke and M. J. West (eds.). Computational Astrophysics; 12th Kingston Meeting on Theoretical Astrophysics; proceedings of meeting held in Halifax; Nova Scotia; Canada October 17–19; 1996: 3.Google Scholar
  44. Orzack, Steven Hecht and Elliott Sober 1993. A Critical Assessment of Levins’s The Strategy of Model Building in Population Biology (1966). The Quarterly Review of Biology 68: 533–546.CrossRefGoogle Scholar
  45. Pineau des Forêts, Guillaume, David R. Flower and Tom W. Hartquist 1986a. Theoretical Studies of Interstellar Molecular Shocks. II—Molecular Hydrogen Cooling and Rotational Level Populations. Monthly Notices of the Royal Astronomical Society (218): 729–741.  https://doi.org/10.1093/mnras/218.4.729 CrossRefGoogle Scholar
  46. Pineau des Forêts, Guillaume, David R. Flower, François Aguillon, Victor Sidis and Muriel Sizun 2001. Collisional Excitation of H2 by Grains in C‑type Shocks. Monthly Notices of the Royal Astronomical Society (323): L7–L11.  https://doi.org/10.1046/j.1365-8711.2001.04473.x CrossRefGoogle Scholar
  47. Pineau des Forêts, Guillaume, David R. Flower, Tom W. Hartquist, and Alexander Dalgarno 1986b. Theoretical Studies of Interstellar Molecular Shocks. III—The Formation of CH(+) in Diffuse Clouds. Monthly Notices of the Royal Astronomical Society (220): 801–824.  https://doi.org/10.1093/mnras/220.4.801 CrossRefGoogle Scholar
  48. Pineau des Forêts, Guillaume, Edith Roueff and David R. Flower 1986c. Theoretical Studies of Interstellar Molecular Shocks. IV—The Sulphur Chemistry in Diffuse Clouds. Monthly Notices of the Royal Astronomical Society (223): 743–756.  https://doi.org/10.1093/mnras/223.4.743 CrossRefGoogle Scholar
  49. Pineau des Forêts, Guillaume, Edith Roueff and David R. Flower 1989. Theoretical Studies of Interstellar Molecular Shocks. X—The Chemical Fractionation of Deuterium in Dark Clouds. Monthly Notices of the Royal Astronomical Society (240): 167–177.  https://doi.org/10.1093/mnras/240.1.167 CrossRefGoogle Scholar
  50. Pineau des Forêts Guillaume, Edith Roueff, Peter Schilke and David R. Flower 1993. Sulphur-bearing Molecules as Tracers of Shocks in Interstellar Clouds. Monthly Notices of the Royal Astronomical Society (262): 915–928.  https://doi.org/10.1093/mnras/262.4.915 CrossRefGoogle Scholar
  51. Portegies Zwart, Simon 2018. Computational Astrophysics for the Future. Science (361): 979–980.  https://doi.org/10.1126/science.aau3206 CrossRefGoogle Scholar
  52. Rieke, George H. 2009. History of Infrared Telescopes and Astronomy. Experimental Astronomy (25): 125.  https://doi.org/10.1007/s10686-009-9148-7 CrossRefGoogle Scholar
  53. Schilke, Peter, Malcolm C. Walmsley, Guillaume Pineau des Forêts and David R. Flower 1997. SiO Production in Interstellar Shocks. Astronomy & Astrophysics 321: 293–304.Google Scholar
  54. Tidman, Derek A. and Nicholas A. Krall 1971. Shock Waves in Collisionless Plasmas. New York: Wiley & Sons.Google Scholar
  55. Toomre, Alar and Juri Toomre 1972. Galactic Bridges and Tails. Astrophysical Journal (178): 623.  https://doi.org/10.1086/151823 CrossRefGoogle Scholar
  56. Weisberg, Michael 2013. Simulation and Similarity: Using Models to Understand the World. Oxford: Oxford University Press.CrossRefGoogle Scholar
  57. Wentzel, Donat G. 1966. Interstellar Clouds and Petschek’s Mechanism for Dissipating Magnetic Fields. Astrophysical Journal (145): 595–615.  https://doi.org/10.1086/148799 CrossRefGoogle Scholar
  58. Wilgenbus, David, S. Cabrit, Guillaume Pineau des Forêts and David R. Flower 2000. The ortho:para‑H2 Ratio in C‑ and J‑type Shocks. Astronomy & Astrophysics 356: 1010–1022.Google Scholar
  59. Winsberg, Eric 2010. Science in the Age of Computer Simulation. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  60. Woodward, P. R. 1976. Shock-driven Implosion of Interstellar Gas Clouds and Star Formation. Astrophysical Journal (207): 484.  https://doi.org/10.1086/154516 CrossRefGoogle Scholar
  61. Wright, Christopher M., Siegfried Drapatz, Ralf Timmermann, Paul P. van der Werf, Reinhard Katterloher and Thijs de Graauw 1996. Molecular Hydrogen Observations of Cepheus A West. Astronomy & Astrophysics 315: L301–L304.Google Scholar
  62. Zel’dovich, Yakov B., and Yuri P. Raizer 2002. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Mineola, New York: Dover Publications Inc.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IPAGUniversité Grenoble AlpesGrenobleFrance

Personalised recommendations