Advertisement

Program FAKE: Monte Carlo Event Generators as Tools of Theory in Early High Energy Physics

  • Arianna BorrelliEmail author
Artikel/Articles

Abstract

The term Monte Carlo method indicates any computer-aided procedure for numerical estimation that combines mathematical calculations with randomly generated numerical input values. Today it is an important tool in high energy physics while physicists and philosophers also often consider it a sort of virtual experiment. The Monte Carlo method was developed in the 1940s, in the context of U.S. American nuclear weapons research, an event often regarded as the origin of both computer simulation and “artificial reality” (Galison 1997). The present paper interrogates this strong claim by focusing on the emergence of Monte Carlo event generators in particle physics in the early 1960s. This historical case study shows how, as Monte Carlo computation became part of the toolbox of particle physicists around 1960, it was neither usually referred to as a “computer simulation” nor was it regarded as a surrogate for experimentation. In revising the history of this method, this paper asks, in what context did particle physicists of the 1960s decide to create FAKE, the first high-energy-physics Monte Carlo event simulator? What was their goal? And what epistemic role did FAKE play? In answering these questions, it is argued that Monte Carlo computations were not introduced into particle physics to simulate experiments, but rather they played the role of theoretical tools. The Monte Carlo method was able to do this thanks to its random component, a property which provided a means of modeling a specific phenomenon, so-called “(particle) resonances”. Indeed, in doing so, event generators even came to mutually assimilate and reshape the notions of particle and resonance, taking up an epistemic function which had previously been confined to physical-mathematical formulae: that of a medium which could express aspects of particle theory.

Keywords

Monte Carlo method computer simulation high energy physics elementary particles resonances medium of theory 

Programm FAKE: Monte Carlo Eventgeneratoren als Werkzeug der Theorie in der frühen Hochenergiephysik

Zusammenfassung

Als Monte-Carlo-Methode versteht man jedes computergestütztes Verfahren der numerischen Schätzung, das mathematische Berechnungen mit zufallsgenerierten numerischen Eingaben kombiniert. Sie ist ein wichtiges Werkzeug der Hochenergiephysik und gilt bei Physikern und Philosophen oft als eine Art virtuelles Experiment. Die Monte-Carlo-Methode wurde in den 1940ern Jahren im Kontext US-amerikanischer Forschung über Nuklearwaffen entwickelt und ihre Entstehung wird heute oft mit dem Ursprung von Computersimulationen und „künstlicher Wirklichkeit“ (Galison 1997) gleichgesetzt. Der vorliegende Beitrag hinterfragt diese Sicht der Dinge, indem er die Entstehung von Monte-Carlo-Eventgeneratoren in der Teilchenphysik der 1960er Jahre untersucht. Diese historische Fallstudie zeigt, dass Monte-Carlo-Berechnungen, als sie um 1960 dem Werkzeugkasten der Teilchenphysik hinzugefügt wurden, weder „Computersimulationen“ genannt, noch als eine Art Ersatz zum Ausführen von Experimenten betrachtet wurden. Der Aufsatz wirft neues Licht auf diese Ereignisse und untersucht, welcher Kontext Teilchenphysiker der 1960er Jahren dazu veranlasste, FAKE zu entwickeln, den ersten Monte-Carlo-Eventgenerator der Hochenergiephysik. Was war ihr Ziel? Welche epistemische Rolle spielte FAKE? Ergebnis der Untersuchung ist, dass Monte-Carlo-Berechnungen in die Teilchenphysik nicht eingeführt wurden, um Experimente zu simulieren, sondern als Werkzeuge der Theorie und zwar aufgrund der Zufallselemente der Monte-Carlo-Methode, welche die Modellierung eines spezifischen Phänomens erlaubten, die sogenannte „(Teilchen)Resonanz“. Aus dieser Anwendung der Monte-Carlo-Eventgeneratoren ergab sich mit der Zeit sogar eine wechselseitige Assimilation der Begriffe „Teilchen“ und „Resonanz“, die zur Umwandlung beider führte. So nahmen Monte-Carlo-Berechnungen eine epistemische Funktion, die bis dahin nur physikalisch-mathematische Formeln ausgeübt hatten: die eines Mediums, das Aspekte der Teilchentheorie ausdrücken kann.

Schlüsselwörter

Monte-Carlo-Methode Computersimulation Hochenergiephysik Elementarteilchen Resonanzen Medium der Theorie 

Notes

Funding

This research was funded by the Institute for Advanced Study on Media Cultures of Computer Simulation (MECS), Leuphana University Lüneburg (DFG grant KFOR 1927) and by the project “Exploring the ‘dark ages’ of particle physics” (DFG grant BO 4062/2-1).

References

  1. Alvarez, Luis (1972). Recent Developments in Particle Physics. Nobel Lecture. 11 December 1968. In Nobel Lectures Including Presentation Speeches and Laureates’ Biographies: Physics 1963–1970. New York: Elsevier: 241–290.Google Scholar
  2. Alves Jr, Antonio A. and Michale D. Sokoloff (2017). MCBooster: A Library for Fast Monte Carlo Generation of Phase-Space Decays on Massively Parallel Platforms. arXiv:1702.05712. http://arxiv.org/abs/1702.05712 (19.08.2019).
  3. Anderl, Sibylle (2019). Implicit Changes of Model Uses in Astrophysics, Illustrated on the Paris-Durham Shock Model. NTM this special issue.  https://doi.org/10.1007/s00048-019-00225-8.
  4. Baird, Davis (2004). Thing Knowledge: A Philosophy of Scientific Instruments. Berkeley: University of California Press.Google Scholar
  5. Battimelli, Giovanni and Giovanni Ciccotti (2018). Berni Alder and the Pioneering Times of Molecular Simulation. The European Physical Journal H (43): 303–335. https://doi.org/10.1140/epjh/e2018-90027-5 CrossRefGoogle Scholar
  6. Belen’kij, S. Z., V. M. Maksimenko, A. I. Nikišov, and I. Leon Rozental (1958). Statistische Theorie der Vielfacherzeugung von Teilchen. Fortschritte der Physik (6): 524–564.  https://doi.org/10.1002/prop.19580061003 CrossRefGoogle Scholar
  7. Block, Martin M. (1956). Phase-Space Integrals for Multiparticle Systems. Physical Review (101): 796–799.  https://doi.org/10.1103/PhysRev.101.796 CrossRefGoogle Scholar
  8. Bordner, C. A., Alfred Brenner, and E. E. Ronat (1966). General Monte Carlo Multivertex Event Generator. Review of Scientific Instruments (37): 36–43.  https://doi.org/10.1063/1.1719947 CrossRefGoogle Scholar
  9. Borrelli, Arianna (2005). Mathematical Notation as a Philosophical Instrument. In: Siegfried Zielinski and Silvia M. Wagnermaier (eds.). Variantology 1. On Deep Time Relations of Arts, Sciences and Technologies. Cologne: Walther König: 279–296.Google Scholar
  10. Borrelli, Arianna (2017a). The Uses of Isospin in Early Nuclear and Particle Physics. Studies in History and Philosophy of Modern Physics (60): 81–94.  https://doi.org/10.1016/j.shpsb.2017.03.004 CrossRefGoogle Scholar
  11. Borrelli, Arianna (2017b). Quantum Theory: A Media-archeological Perspective. In: Anne Dippel and Martin Warnke (eds.). Interference-Events. Epistemic Shifts in Physics through Computer Simulations. Lüneburg: Meson Press: 95–116. http://meson.press/books/interferences-and-events Google Scholar
  12. Borrelli, Arianna (forthcoming) (2020). The Tension between Modeling and Mathematics in Early Particle Physics. In: Michael Friedman and Karin Krauthausen (eds.). Model and Mathematics: from the 19th to the 21st century. Birkhäuser.Google Scholar
  13. Borrelli, Arianna and Janina Wellmann (2019). Computer Simulations Then and Now: an Introduction and Historical Reassessment. NTM this special issue.  https://doi.org/10.1007/s00048-019-00227-6 CrossRefGoogle Scholar
  14. Bredella, Nathalie (2019). Simulation and Architecture: Mapping Building Information Modelling. NTM this special issue.  https://doi.org/10.1007/s00048-019-00224-9 CrossRefGoogle Scholar
  15. Breit, Gregory and Eugene Wigner (1936). Capture of Slow Neutrons. Physical Review (49): 519–31.  https://doi.org/10.1103/PhysRev.49.519 CrossRefGoogle Scholar
  16. Brenner, Alfred E. (1996). The Computing Revolution and the Physics Community. Physics Today (49): 24–30.Google Scholar
  17. Bresolí Catà, Francesca (2006). Descobriment Experimental de les Partícules Estranyes i Construcció Teòrica del Concepte d’Estranyesa (1947–1957). PhD-Thesis. Universitat Autònoma de Barcelona. http://www.tdx.cat/handle/10803/3383 (19.08.2019).
  18. Brown, Gerald Edward (1956). Monte Carlo Methods. In: Edwin Beckenbach (ed.). Modern Mathematics for the Engineer. New York: McGraw-Hill: 279–305.Google Scholar
  19. Brown, Laurie and Lillian Hoddeson (eds.) (1986). The Birth of Particle Physics. Cambridge: Cambridge University Press.Google Scholar
  20. Brown, Laurie, Max Dresden and Lillian Hoddeson (eds.) (1989). Pions to Quarks: Particle Physics in the 1950s. Cambridge: Cambridge University Press.Google Scholar
  21. Brun, Rene, Ronald Hagelberg, Jean-Claude Lassalle and Michel Hansroul (1978). Simulation Program for Particle Physics Experiments, GEANT: User Guide and Reference Manual. CERN Geneva: CERN. https://cds.cern.ch/record/118715 (19.08.2019).Google Scholar
  22. Cerulus, Frans (1959). Consequences of a Strong π‑π Interaction in the Statistical Theory of p‑p Annihilation. Il Nuovo Cimento (14): 827–835.  https://doi.org/10.1007/BF02859638 CrossRefGoogle Scholar
  23. Cerulus, Frans and R. Hagedorn (1958a). A Monte-Carlo Method to Calculate Multiple Phase Space Integrals—I. Il Nuovo Cimento (9): 646–658.  https://doi.org/10.1007/BF02747692 CrossRefGoogle Scholar
  24. Cerulus, Frans and R. Hagedorn (1958b). A Monte-Carlo Method to Calculate Multiple Phase Space Integrals—II. Il Nuovo Cimento (9): 659–677.  https://doi.org/10.1007/BF02747693 CrossRefGoogle Scholar
  25. Chandler, J. P. and C. A. Tilger (1967). Direct Generation of Monte Carlo Final States with Unit Weight. Nuclear Instruments and Methods (51): 117–120.  https://doi.org/10.1016/0029-554X(67)90370‑9CrossRefGoogle Scholar
  26. Coopmans, Catelijne, Steve Woolgar, Michael Lynch and Janet Vertesi (eds.) (2014). Representation in Scientific Practice Revisited. Cambridge, MA: MIT Press.Google Scholar
  27. Crew, Jalo, Robert D. Hill and Leo S. Lavatelli (1957). Monte Carlo Calculation of Single Pion Production by Pions. Physical Review (106): 1051–1056.  https://doi.org/10.1103/PhysRev.106.1051 CrossRefGoogle Scholar
  28. Curtiss, John H. (1951). Preface. In: Alston S. Householder (ed.). Monte Carlo Method. Washington DC: U. S. Governement Printing Office: iii.Google Scholar
  29. De Mol, Liesbeth (2019). ‘A pretence of what is not’? A study of simulation(s) from the ENIAC perspective. NTM, this special issue.  https://doi.org/10.1007/s00048-019-00226-7 CrossRefGoogle Scholar
  30. Desai, Bipin R. (1960). Pion Multiplicity in Nucleon-Antinucleon Annihilation. Physical Review (119): 1390–1394.  https://doi.org/10.1103/PhysRev.119.1390 CrossRefGoogle Scholar
  31. Dippel, Anne and Martin Warnke (eds.) (2017). Interference-Events. Epistemic Shifts in Physics through Computer Simulations. Lüneburg: Meson Press. http://meson.press/books/interferences-and-events Google Scholar
  32. Fermi, Enrico (1950). High Energy Nuclear Events. Progress of Theoretical Physics (5): 570–583.  https://doi.org/10.1143/ptp/5.4.570 CrossRefGoogle Scholar
  33. Galison, Peter (1997). Image and Logic: a Material Culture of Microphysics. Chicago: University of Chicago Press.Google Scholar
  34. Gell-Mann, Murray (1982). Strangeness. Journal de Physique Colloques (43): C8-395–C8-408.Google Scholar
  35. Goldberger, Marvin L. (1956). Introductory Survey, Dispersion Relations. In: Joseph Ballam, Val Fitch, Thomas Fulton, Kerson Huang, R. Ronald Rau and Sam B. Treiman (eds.). High Energy Nuclear Physics. Proceedings of the Sixth Rochester Conference 1956. New York: Interscience Publishing: I.1–I.13.Google Scholar
  36. Hagedorn, Rolf (1959). Calculating High Energy Particle Production According to Statistical Theories on an Electronic Computer; pt: 1. CERN 59-25. https://cds.cern.ch/record/214347 (19.08.2019).Google Scholar
  37. Hagedorn, Rolf (1992). Frans Cerulus at CERN—Reminiscences. In: Dertig Jaar Instituut Theoretische Fysika te Leuven. Bij het Emeriaat van Professor F. Cerulus. Leuven: KU Leuven: 3–19.Google Scholar
  38. Hagedorn, Rolf (2016) [1994]. The Long Way to the Statistical Bootstrap Model: 1994. In: Johann Rafelski (ed.). Melting Hadrons, Boiling Quarks—From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN. Springer: Cham: 139–78.  https://doi.org/10.1007/978-3-319-17545-4_17 CrossRefGoogle Scholar
  39. Haigh, Thomas, Mark Priestley, and Crispin Rope (2016). ENIAC in Action: Making and Remaking the Modern Computer. Cambridge, MA: MIT Press.Google Scholar
  40. Hanson, N. Russell. (1965). Patterns of Discovery: An Inquiry into the Conceptual Foundations of Science. Cambridge: Cambridge University Press.Google Scholar
  41. Hoang, Tschang Fong and Jonathan Young (1960). Covariant Phase Space Factors for Reactions Involving Four to Six Secondary Particles. UCRL 9050. Berkeley: University of California Lawrence Radiation Laboratory. https://escholarship.org/uc/item/20f9h3ng (19.08.2019).Google Scholar
  42. Householder, Alston S. (ed.) (1951a). Monte Carlo Method. Washington DC: U. S. Government Printing Office.Google Scholar
  43. Householder, Alston S. (1951b). Foreword. In: Alston S. Householder (ed.). Monte Carlo Method. Washington DC: U. S. Government Printing Office: v–vi.Google Scholar
  44. Hurd, Cuthbert C. (1985). A Note on Early Monte Carlo Computations and Scientific Meetings. Annals of the History of Computing (7): 141–155.  https://doi.org/10.1109/MAHC.1985.10019 CrossRefGoogle Scholar
  45. James, Frederick (1968). Monte Carlo Phase Space. CERN-68-12. Geneva: CERN.  https://doi.org/10.5170/CERN-1968-015 (19.08.2019).CrossRefGoogle Scholar
  46. James, Frederick (1980). Monte Carlo Theory and Practice. Reports on Progress in Physics 43 (9): 1145–1189.  https://doi.org/10.1088/0034-4885/43/9/002 CrossRefGoogle Scholar
  47. Kaiser, David (2005). Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics. Chicago: University of Chicago Press.Google Scholar
  48. Kalogeropoulos, Theodore E. (1959). A Study of the Antiproton Annihilation Process in Complex Nuclei. UCRL 8677 Berkeley: University of California Lawrence Radiation Laboratory https://escholarship.org/uc/item/6956p663 (19.08.2019).Google Scholar
  49. Klein, Ursula (2003). Experiments, Models, Paper Tools: Cultures of Organic Chemistry in the Nineteenth Century. Stanford: Stanford University Press.Google Scholar
  50. Kopylov, Gercen I. (1958). A Model for the Process of Multiple Production. Soviet Physics Journal of Experimental and Theoretical Physics (8): 996–1002 (Russian original—Zhur. Eksptl’. i Teoret Fiz. (35) 1958).Google Scholar
  51. Kopylov, Gercen I. (1961). A Method for the Calculation of the Statistical Weights and Distributions in Theories of Multiple Production. Soviet Physics Journal of Experimental and Theoretical Physics (12): 761–766 (Russian original: Zhur. Eksptl’. i Teoret Fiz. (39) 1960).Google Scholar
  52. Kretzschmar, Martin (1961). Statistical Methods in High-Energy Physics. Annual Review of Nuclear Science (11):1–38Google Scholar
  53. Lenoir, Timothy (1998). Inscribing Science: Scientific Texts and the Materiality of Communication. Stanford: Stanford University Press.Google Scholar
  54. Lynch, Gerald (1960). Statistical Model Calculation of Annihilation of Antinucleons into Pions. UCID 1705. Berkeley: University of California Lawrence Radiation Laboratory. https://publications.berkeley.dgicloud.com/islandora/object/ir%3A131468/ Google Scholar
  55. Lynch, Gerald (1961). Final States of the Antiproton-Proton System. Reviews of Modern Physics (33): 395–401.  https://doi.org/10.1103/RevModPhys.33.395 CrossRefGoogle Scholar
  56. Lynch, Gerald (1962a). Program FAKE: Monte Carlo Simulation of Bubble Chamber Events. UCRL 10335. Berkeley: University of California Lawrence Radiation Laboratory https://escholarship.org/uc/item/6rv745sd (15.01.2018).Google Scholar
  57. Lynch, Gerald (1962b). Experimental Data on New Resonances. Proceedings of the Physical Society (80): 46–62. https://doi.org/10.1088/0370-1328/80/1/306 CrossRefGoogle Scholar
  58. Lynch, Gerald (1964). Owl—A Monte Carlo Phase Space Programme. CERN/TC/PROG/64—18. Geneva: CERN. https://cds.cern.ch/record/2034438 (19.08.2019).Google Scholar
  59. Lynch, Michael and Steve Woolgar (eds.) (1990). Representation in Scientific Practice. Cambridge, MA: MIT Press.Google Scholar
  60. Mareschal, Michel (2018). Early Years of Computational Statistical Mechanics. The European Physical Journal H (43): 293–302.  https://doi.org/10.1140/epjh/e2018-90006-7 CrossRefGoogle Scholar
  61. Marshall, Albert W. (1956). An Introductory Note. In: Herbert Meyer (ed.). Symposium on Monte Carlo Methods. New York: Wiley: 1–14.Google Scholar
  62. McLuhan, Marshall (1965). Understanding Media: The Extensions of Man. Corte Madera: Gingko Press.Google Scholar
  63. Metropolis, Nicholas and Stanislav Ulam (1949). The Monte Carlo Method. Journal of the American Statistical Association (44): 335–341.  https://doi.org/10.2307/2280232 CrossRefGoogle Scholar
  64. Metropolis, Nicholas, Robert L. Bivins, M. Storm, J. M. Miller, G. Friedlander and Anthony Turkevich (1958). Monte Carlo Calculations on Intranuclear Cascades. II. High-Energy Studies and Pion Processes. Physical Review (110): 204–219.  https://doi.org/10.1103/PhysRev.110.204 CrossRefGoogle Scholar
  65. Metropolis, Nicholas (1987). The Beginning of the Monte Carlo Method. Los Alamos Science. Special Issue (15): 125–130.Google Scholar
  66. Meyer, Herbert A. (ed.) (1956). Symposium on Monte Carlo Methods. New York: Wiley.Google Scholar
  67. Milburn, Richard H. (1955). Statistical Theory of Multiple Meson Production. Reviews of Modern Physics (27): 1–14.  https://doi.org/10.1103/RevModPhys.27.1 CrossRefGoogle Scholar
  68. Nikolski, B.A., L. P. Kudrin and S. A. Ali-Zade (1957). Inelastic Scattering of 160 mev Pions on Emulsion Nuclei. Journal of Experimental and Theoretical Physics (5): 93–101.Google Scholar
  69. Pickering, Andrew (1984). Constructing Quarks. A Sociological History of Particle Physics. Chicago: University of Chicago Press.Google Scholar
  70. Reimer, Helmut and Karl Rihaczek (2010). Nachruf Eckard Raubold. Datenschutz und Datensicherheit (12): 808.Google Scholar
  71. Rheinberger, Hans-Jörg (1992). Experiment, Differenz, Schrift: Zur Geschichte epistemischer Dinge. Marburg a. d. L.: Basilisken-Presse.Google Scholar
  72. Rotman, Brian (1993). Ad Infinitum: The Ghost in Turing’s Machine. Stanford: Stanford University Press.Google Scholar
  73. Solmitz, Frank T. (1960). Antiproton Experiments in Hydrogen Bubble Chamber. In: George Chandy, Adrian Constantin Melissinos, Ennack Sudarshan and John H. Tinlot (eds.). Proceedings Rochester 10th Conference 1960. Rochester: Rochester University Press:164–171.Google Scholar
  74. Srivastava, Prem Prakash and George Sudarshan (1958). Multiple Production of Pions in Nuclear Collisions. Physical Review (110): 765–766.  https://doi.org/10.1103/PhysRev.110.765 CrossRefGoogle Scholar
  75. Thomas, William (2012). Strategies of Detection: Interpretive Methods in Experimental Particle Physics, 1930–1950. Historical Studies in the Natural Sciences (42): 389–431.  https://doi.org/10.1525/hsns.2012.42.5.389 CrossRefGoogle Scholar
  76. Walker, Robert L. (1989). Learning about Nucleon Resonances with Pion Photoproduction. In: Laurie Brown, Max Dreseden and Lillian Hoddeson (eds.). Pions to Quarks. Particle Physics in the 1950s. Cambridge: Cambridge University Press: 111–125.Google Scholar
  77. Wise, M. Norton (1988). Mediating Machines. Science in Context (2): 77–113.  https://doi.org/10.1017/S0269889700000508 CrossRefGoogle Scholar
  78. Wojcicki, Stanley (1987). My First Days in the Alvarez Group. In: Peter Trower (ed.). Discovering Alvarez. Chicago: University of Chicago Press: 163–173.Google Scholar
  79. Yang, Chen Ning and Richard Christian (1953). Meson Spectrum from Cosmotron Target. Brookhaven Cosmotron Internal Report.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Media Cultures of Computer Simulation, Institute for Advanced StudyLeuphana University LüneburgLüneburgGermany

Personalised recommendations