Skip to main content
Log in

Clathrolides A–B: previously undescribed macrocylic lactones from marine demosponge Clathria (Thalysias) vulpina (Lamarck, 1814) as potential antihypertensive leads attenuating angiotensin converting enzyme

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Biochemical investigation of bioactive compounds from the marine demospongiae Clathria (Thalysias) vulpina (Lamarck, 1814) (family Microcionidae) resulted in the isolation of two previously undescribed 22-membered macrocyclic lactone derivatives clathrolide A and B from its organic extract. Structural elucidation of the compounds were carried out using spectroscopic analysis. Clathrolide A exhibited greater antihypertensive (IC50 0.44 ± 0.02 mM), anti-inflammatory (IC50 0.74 ± 0.04 mM), anti-hyperglycemic (IC50 0.85 ± 0.01 mM), and antioxidant (IC50 0.70 ± 0.03 mM) activities compared to clathrolide B. Among various bioactivities, such as antihypertensive, anti-inflammatory, anti-hyperglycemic, and antioxidant properties, angiotensin converting enzyme attenuation potential of clathrolide A was found to be significantly greater, and comparable with the standard antihypertensive drug, captopril (IC50 0.36 ± 0.03 mM). Higher electronic properties (topological polar surface area 133.52) along with comparatively lesser docking score and binding energy of clathrolide A with the aminoacyl residues of angiotensin-I converting enzyme (−12.38 and −12.91 kcal/mol, respectively) recognized its prospective inhibitory property against the enzyme catalyzing the rate-limiting step to form the vasoconstrictor angiotensin-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The chromatographic and spectroscopic spectral data are included as Supplementary item.

References

  1. Murray BA, FitzGerald RJ. Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr Pharm Des. 2007;13:773–91. https://doi.org/10.2174/138161207780363068.

    Article  CAS  PubMed  Google Scholar 

  2. Tedla YG, Bautista LE. Drug side effect symptoms and adherence to antihypertensive medication. Am J Hypertens. 2016;29:772–9. https://doi.org/10.1093/ajh/hpv185.

    Article  PubMed  Google Scholar 

  3. Suleria HA, Osborne S, Masci P, Gobe G. Marine-based nutraceuticals: an innovative trend in the food and supplement industries. Mar Drugs. 2015;13:6336–51. https://doi.org/10.3390/md13106336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Montaser R, Luesch H. Marine natural products: a new wave of drugs? Future Med Chem. 2011;3:1475–89. https://doi.org/10.3390/md13106336.

    Article  CAS  PubMed  Google Scholar 

  5. Chakraborty K, Francis P. Procerolides A-B from Microcionidae marine sponge Clathria procera: anti-inflammatory macrocylic lactones with selective cyclooxygenase-2 attenuation properties. Bioorg Chem. 2021;109:104663. https://doi.org/10.1016/j.bioorg.2021.104663.

    Article  CAS  PubMed  Google Scholar 

  6. Chakraborty K, Antony T. Salicornolides A-C from Gracilaria salicornia attenuate pro-inflammatory 5-lipoxygense: prospective natural anti-inflammatory leads. Phytochemistry. 2020;172:112259. https://doi.org/10.1016/j.phytochem.2020.112259.

    Article  CAS  PubMed  Google Scholar 

  7. Francis P, Chakraborty K. Stomopnolides A-B from echinoidea sea urchin Stomopneustes variolaris: prospective natural anti-inflammatory leads attenuate pro-inflammatory 5-lipoxygenase. Nat Prod Res. 2019 Nov 29:1-13. https://doi.org/10.1080/14786419.2019.1696332. Epub ahead of print. PMID: 31782657.

  8. Chakraborty K, Krishnan S, Joy M. Macrocyclic lactones from seafood Amphioctopus neglectus: newly described natural leads to attenuate angiotensin-II induced cardiac hypertrophy. Biomed Pharmacother. 2019;110:155–67. https://doi.org/10.1016/j.biopha.2018.11.034.

    Article  CAS  PubMed  Google Scholar 

  9. Chakraborty K, Francis P. Stomopneulactone D from long-spined sea urchin Stomopneustes variolaris: anti-inflammatory macrocylic lactone attenuates cyclooxygenase-2 expression in lipopolysaccharide-Activated macrophages. Bioorg Chem. 2020;103:104140. https://doi.org/10.1016/j.bioorg.2020.104140.

    Article  CAS  PubMed  Google Scholar 

  10. Salas S, Chakraborty K. An unreported polyether macrocyclic lactone with antioxidative and anti-lipoxygenase activities from the Babylonidae gastropod mollusc Babylonia spirata. Med Chem Res. 2018;27:2446–53. https://doi.org/10.1007/s00044-018-2248-z.

    Article  CAS  Google Scholar 

  11. Yan S, Ci X, Chen N, Chen C, Li X, Chu X, et al. Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm Res. 2011;60:589–96. https://doi.org/10.1007/s00011-011-0307-8.

    Article  CAS  PubMed  Google Scholar 

  12. Remko M. Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors. Chem Pap. 2007;61:133–41. https://doi.org/10.2478/s11696-007-0010-y.

    Article  CAS  Google Scholar 

  13. Ebada SS, Lin W, Proksch P. Bioactive sesterterpenes and triterpenes from marine sponges: occurrence and pharmacological significance. Mar Drugs. 2010;8:313–46. https://doi.org/10.3390/md8020313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Molinski TF. Cyclic azole-homologated peptides from marine sponges. Org Biomol Chem. 2017;16:21–9. https://doi.org/10.1039/c7ob02628e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aiello A, Fattorusso E, Menna M. Steroids from sponges: recent reports. Steroid. 1999;64:687–714. https://doi.org/10.1016/S0039-128X(99)00032-X.

    Article  CAS  Google Scholar 

  16. Francis P, Chakraborty K. Anti-inflammatory scalarane-type sesterterpenes, erectascalaranes A–B, from the marine sponge Hyrtios erectus attenuate pro-inflammatory cyclooxygenase-2 and 5-lipoxygenase. Med Chem Res. 2021;30:886–96. https://doi.org/10.1007/s00044-020-02682-6.

    Article  CAS  Google Scholar 

  17. Pettit GR, Cichacz ZA, Gao F, Boyd MR, Schmidt JM. Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J Chem Soc Chem Commun. 1994;9:1111–2. https://doi.org/10.1039/C39940001111.

    Article  Google Scholar 

  18. Ko S-C, Jang J, Ye B-R, Kim M-S, Choi I-W, Park W-S, et al. Purification and molecular docking study of angiotensin I-converting enzyme (ACE) inhibitory peptides from hydrolysates of marine sponge Stylotella aurantium. Process Biochem. 2017;54:180–7. https://doi.org/10.1016/j.procbio.2016.12.023.

    Article  CAS  Google Scholar 

  19. Woo JK, Ha TKQ, Oh DC, Oh WK, Oh KB, Shin J. Polyoxygenated steroids from the sponge Clathria gombawuiensis. J Nat Prod. 2017;80:3224–33. https://doi.org/10.1021/acs.jnatprod.7b00651.

    Article  CAS  PubMed  Google Scholar 

  20. Capon RJ, Miller M, Rooney F, Mirabilin G. A new alkaloid from a southern Australian marine sponge, Clathria species. J Nat Prod. 2001;64:643–4. https://doi.org/10.1021/np000564g.

    Article  CAS  PubMed  Google Scholar 

  21. Davis RA, Mangalindan GC, Bojo ZP, Antemano RR, Rodriguez NO, Concepcion GP, et al. Microcionamides A and B, bioactive peptides from the Philippine sponge Clathria (Thalysias) abietina. J Org Chem. 2004;69:4170–6. https://doi.org/10.1021/jo040129h.

    Article  CAS  PubMed  Google Scholar 

  22. Joy M, Chakraborty K. Biogenic antioxidative and anti-inflammatory aryl polyketides from the venerid bivalve clam Paphia malabarica. Food Chem. 2017;237:169–80. https://doi.org/10.1016/j.foodchem.2017.05.087.

    Article  CAS  PubMed  Google Scholar 

  23. Antony T, Chakraborty K. Xenicanes attenuate pro-inflammatory 5-lipoxygenase: prospective natural anti-inflammatory leads from intertidal brown seaweed Padina tetrastromatica. Med Chem Res. 2019;28:597–607. https://doi.org/10.1007/s00044-019-02322-8.

    Article  CAS  Google Scholar 

  24. Li G-H, Le G-W, Shi Y-H, Shrestha S. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res. 2004;24:469–86. https://doi.org/10.1016/j.nutres.2003.10.014.

  25. De Giusti VC, Caldiz CI, Ennis IL, Pérez NG, Cingolani HE, Aiello EA. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS). Front Physiol. 2013;4:126. https://doi.org/10.3389/fphys.2013.00126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baradaran A, Nasri H, Rafieian-Kopaei M. Oxidative stress and hypertension: possibility of hypertension therapy with antioxidants. J Res Med Sci. 2014;19:358–67.

    PubMed  PubMed Central  Google Scholar 

  27. Vajragupta O, Boonchoong P, Berliner LJ. Manganese complexes of curcumin analogues: evaluation of hydroxyl radical scavenging ability, superoxide dismutase activity and stability towards hydrolysis. Free Radic Res. 2004;38:303–14.

    Article  CAS  Google Scholar 

  28. Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14:840–60. https://doi.org/10.1111/j.1582-4934.2009.00897.x.

    Article  CAS  PubMed  Google Scholar 

  29. Mazaleuskaya LL, Theken KN, Gong L, Thorn CF, FitzGerald GA, Altman RB, et al. Pharm GKB summary: ibuprofen pathways. Pharmacogenet Genomics.2015;25:96–106. https://doi.org/10.1097/FPC.0000000000000113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maneesh A, Chakraborty K, Makkar F. Pharmacological activities of brown seaweed Sargassum wightii (Family Sargassaceae) using differentin vitromodels. Int J Food Prop. 2017;20:931–45. https://doi.org/10.1080/10942912.2016.1189434.

    Article  CAS  Google Scholar 

  31. Truscheit E, Frommer W, Junge B, Müller L, Schmidt DD, Wingender W. Chemistry and biochemistry of microbial α-glucosidase inhibitors. Angew Chem Int. 1981;20:744–61.

    Article  Google Scholar 

  32. Matos MJ, Pérez-Cruz F, Vazquez-Rodriguez S, Uriarte E, Santana L, Borge F, et al. Remarkable antioxidant properties of a series of hydroxy-3-arylcoumarins. Bioorg Med Chem. 2013;21:3900–6. https://doi.org/10.1016/j.bmc.2013.04.015.

    Article  CAS  PubMed  Google Scholar 

  33. Lipinski C, Hopkins A. Navigating chemical space for biology and medicine. Nature. 2004;432:855–61. https://doi.org/10.1038/nature03193.

    Article  CAS  PubMed  Google Scholar 

  34. Maneesh A, Chakraborty K. Previously undescribed fridooleanenes and oxygenated labdanes from the brown seaweed Sargassum wightii and their protein tyrosine phosphatase-1B inhibitory activity. Phytochemistry. 2017;144:19–32. https://doi.org/10.1016/j.phytochem.2017.08.011.

    Article  CAS  PubMed  Google Scholar 

  35. Maneesh A, Chakraborty K. Unprecedented antioxidative and anti-inflammatory aryl polyketides from the brown seaweed Sargassum wightii. Food Res Int. 2017;100:640–9. https://doi.org/10.1016/j.foodres.2017.07.006.

    Article  CAS  PubMed  Google Scholar 

  36. Chakraborty K, Maneesh A, Makkar F. Antioxidant activity of brown seaweeds. J Aquat Food Prod T. 2017;26:406–19. https://doi.org/10.1080/10498850.2016.1201711.

    Article  CAS  Google Scholar 

  37. Maneesh A, Chakraborty K. Previously undescribed antioxidative O-heterocyclic angiotensin converting enzyme inhibitors from the intertidal seaweed Sargassum wightii as potential antihypertensives. Food Res Int. 2018;113:474–86. https://doi.org/10.1016/j.foodres.2018.07.035.

    Article  CAS  PubMed  Google Scholar 

  38. Natesh R, Schwager SLU, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature. 2003;421:551–4. https://doi.org/10.1038/nature01370.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding by the Indian Council of Agricultural Research (ICAR, New Delhi, India) under Central Marine Fisheries Research Institute (ICAR-CMFRI) project “Development of Bioactive Pharmacophores from Marine Organisms” (MBT/HLT/SUB23). The authors are grateful to the Director, ICAR-CMFRI, and Head, Marine Biotechnology Division of ICAR-CMFRI for facilitating the research activities. The authors are thankful to the Chairman, Department of Chemistry, Mangalore University (Karnataka, India) for providing with necessary support.

Author information

Authors and Affiliations

Authors

Contributions

PF and KC designed research, conducted experiments, and analyzed data. KC acquired funds and conceptualized the work. PF drafted the manuscript. KC reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Kajal Chakraborty.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, P., Chakraborty, K. Clathrolides A–B: previously undescribed macrocylic lactones from marine demosponge Clathria (Thalysias) vulpina (Lamarck, 1814) as potential antihypertensive leads attenuating angiotensin converting enzyme. Med Chem Res 30, 1438–1451 (2021). https://doi.org/10.1007/s00044-021-02743-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02743-4

Keywords

Navigation