Skip to main content
Log in

Synthesis and anthelmintic activity of some novel (E)-2-methyl/propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of some novel (E)-2-methyl/propyl-4-[(2-(substitutedbenzylidene)hydrazinyl]-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines was synthesized and characterized by adopting an appropriate synthetic scheme. The effect of electron withdrawing and electron donating groups at the aromatic ring in presence of methyl and propyl substituents at the 2-position of the scaffold was evaluated for anthelmintic activity against adult Indian earthworms (Pheretima posthuma). Among 2-methyl-thieno[2,3-d]pyrimidine analogs, compounds with electron donating methoxy group either at para-position or at meta and para-positions of the aromatic ring showed potent anthelmintic activity at 100 μg/ml (284 and 261.8 μM concentrations) for compounds 5g and 5h with a mean paralytic time of 2.32, 2.22 min, and helminthicidal time of 22.38, 19.43 min, respectively. In contrast, the presence of electron withdrawing chloro group at ortho and para-position of the aromatic ring was found to be favorable for the anthelminthic activity of the compounds 5n and 5o (at concentration of 259.7 μM) with propyl group at the 2-position of the thieno[2,3-d]pyrimidine scaffold, exhibiting mean paralytic time of 2.5 min, 2.81 min and helminthicidal time of 21, 20.03 min, respectively. Anthelmintic activities of these four compounds 5g, 5h, 5n, and 5o (at the concentrations of 284, 261.8, 259.7, and 259.7 μM, respectively) were found to be on par with the standard drug piperazine adipate (time for paralysis and death at 6.25 and 24.5 min, respectively) at concentration of 100 μg/ml (431.03 μM). Overall, the potency of these compounds (5g, 5h, 5n, and 5o) is better than standard drug as they exhibited the same activity at 259.7–284 μM as that of a standard drug (which has shown the same activity at 431.03 μM). Further, the predicted ADME properties of all the synthesized compounds were found to be in the satisfactory ranges as predicted by SwissADME software and found to have drug-like properties. Thus, further modification of these compounds might lead to the discovery of more potent analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajaiyeoba E, Onocha P, Olarenwaju O (2008) In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts. Pharm Biol 39(3):217–220

    Google Scholar 

  • Bahashwan S, Fayed A, Amr A, Flefel E, Kalmouch A (2013) Synthesis and pharmacological activities of some new triazolo-and tetrazolopyrimidine derivatives. Molecules 18(12):15051–15063

    CAS  PubMed  PubMed Central  Google Scholar 

  • ba Ndob IB, Mengome LE, Bourobou H-PB, Banfora YL, Bivigou F (2016) Ethnobotanical survey of medicinal plants used as anthelmintic remedies in Gabon. J Ethnopharmacol 191:360–371

    Google Scholar 

  • Bauri R, Tigga MN, Kullu SS (2015) A review on use of medicinal plants to control parasites. Indian J Nat Products Resour (Former Nat Prod Radiance) 6(4):268–277

    CAS  Google Scholar 

  • Chander PA, Sri HY, Sravanthi NB, Susmitha UV (2014) In vitro anthelmintic activity of Barleria buxifolia on Indian adult earthworms and estimation of total flavonoid content. Asian Pac J Trop Dis 4:S233–S235

    CAS  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 7:42717

    PubMed  PubMed Central  Google Scholar 

  • Deb PK, Mailavaram R, Chandrasekaran B, Kaki VR, Kaur R, Kachler S, Klotz KN, Akkinepally RR (2018) Synthesis, adenosine receptor binding and molecular modelling studies of novel thieno [2, 3‐d] pyrimidine derivatives. Chem Biol Drug Des 91(4):962–969

    CAS  PubMed  Google Scholar 

  • Elliott DE, Weinstock JV (2012) Helminth–host immunological interactions: prevention and control of immune-mediated diseases. Ann NY Acad Sci 1247:83–96

    CAS  PubMed  Google Scholar 

  • Garg K, Bansal Y, Bansal G, Goel R (2014) Design, synthesis, and PASS-assisted evaluation of novel 2-substituted benzimidazole derivatives as potent anthelmintics. Medicinal Chem Res 23(5):2690–2697

    CAS  Google Scholar 

  • Geary TG (2012) Are new anthelmintics needed to eliminate human helminthiases? Curr Opin Infect Dis 25(6):709–717

    CAS  PubMed  Google Scholar 

  • Geary TG, Sakanari JA, Caffrey CR (2015) Anthelmintic drug discovery: into the future. J Parasitol 101(2):125–133

    PubMed  Google Scholar 

  • Gewald K, Schinke E, Böttcher H (1966) Heterocyclen aus CH‐aciden nitrilen, VIII. 2‐amino‐thiophene aus methylenaktiven nitrilen, carbonylverbindungen und Schwefel. Chem Ber 99(1):94–100

    CAS  Google Scholar 

  • Gewald K (1965) Heterocyclen aus CH‐aciden Nitrilen, VII. 2‐Amino‐thiophene aus α‐Oxo‐mercaptanen und methylenaktiven Nitrilen. Chem Ber 98(11):3571–3577

    CAS  Google Scholar 

  • Helmby H (2015) Human helminth therapy to treat inflammatory disorders-where do we stand? BMC Immunol 16(1):12

    PubMed  PubMed Central  Google Scholar 

  • Idris OA, Wintola OA, Afolayan AJ (2019) Helminthiases; prevalence, transmission, host-parasite interactions, resistance to common synthetic drugs and treatment. Heliyon 5(1):e01161

    PubMed  PubMed Central  Google Scholar 

  • Jones KD, Berkley JA (2014) Severe acute malnutrition and infection. Paediatr Int child Health 34(Suppl 1):S1–S29

    PubMed  Google Scholar 

  • Keiser J, Panic G, Adelfio R, Cowan N, Vargas M, Scandale I (2016) Evaluation of an FDA approved library against laboratory models of human intestinal nematode infections. Parasit Vectors 9(1):376–386

    PubMed  PubMed Central  Google Scholar 

  • Knox M, Besier R, Le Jambre L, Kaplan R, Torres-Acosta J, Miller J, Sutherland I (2012) Novel approaches for the control of helminth parasites of livestock VI: summary of discussions and conclusions. Vet Parasitol 186(1-2):143–149

    CAS  PubMed  Google Scholar 

  • Kotze A, Prichard R (2016) Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. In: Robin BG, Georg VSH (eds) Advances in parasitology, vol 93. Elsevier, pp 397–428

  • Lanusse C, Canton C, Virkel G, Alvarez L, Costa-Junior L, Lifschitz A (2018) Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol 34(8):664–682

    CAS  PubMed  Google Scholar 

  • Le TG, Kundu A, Ghoshal A, Nguyen NH, Preston S, Jiao Y, Ruan B, Xue L, Huang F, Keiser J (2019) Novel 1-Methyl-1 H-pyrazole-5-carboxamide derivatives with potent anthelmintic activity. J medicinal Chem 62(7):3367–3380

    CAS  Google Scholar 

  • Martin F, Höglund J, Bergström TF, Lindsjö OK, Tydén E (2018) Resistance to pyrantel embonate and efficacy of fenbendazole in Parascaris univalens on Swedish stud farms. Vet Parasitol 264:69–73

    CAS  PubMed  Google Scholar 

  • Mavrova A, Dimov S, Vuchev D, Anichina K, Yancheva D (2018) Antihelminthic activity of some 2-substituted Thieno [2, 3-d] pyrimidin-4-ones. Lett Drug Des Discov 15(8):887–894

    CAS  Google Scholar 

  • Meyer T, Schröder J, Uphoff M, Noack S, Heckeroth AR, Gassel M, Rohrwild P, Ilg T (2009) Chemical optimization of anthelmintic compounds—a case study. In: Antiparasitic and antibacterial drug discovery: from molecular targets to drug candidates, WILEY-VCH Verlag GMBH & Co. KGaA, Germany, pp. 357–371

  • Partridge FA, Forman R, Willis NJ, Bataille CJ, Murphy EA, Brown AE, Heyer-Chauhan N, Marinič B, Sowood DJ, Wynne GM (2018) 2, 4-Diaminothieno [3, 2-d] pyrimidines, a new class of anthelmintic with activity against adult and egg stages of whipworm. PLoS Negl Trop Dis 12(7):e0006487

    PubMed  PubMed Central  Google Scholar 

  • Prasad MR, Kishore DP (2007a) Multistep, microwave assisted, solvent free synthesis and antibacterial activity of 6-substituted-2, 3, 4-trihydropyrimido [1, 2-c] 9, 10, 11, 12-tetrahydrobenzo [b] thieno [3, 2-e] pyrimidines. Chem Pharm Bull 55(5):776–779

    CAS  Google Scholar 

  • Prasad MR, Rao AR, Rao PS, Rajan KS, Meena S, Madhavi K (2008) Synthesis and adenosine receptor binding studies of some novel triazolothienopyrimidines. Eur J Med Chem 43(3):614–620

    CAS  Google Scholar 

  • Prasad MR, Prashanth J, Shilpa K, Kishore DP (2007b) Synthesis and antibacterial activity of some novel triazolothienopyrimidines. Chem Pharm Bull 55(4):557–560

    CAS  Google Scholar 

  • Prasad MR, Rao ARR, Rao PS, Rajan KS (2001) Microwave-assisted synthesis of novel 5-substituted-2, 3-dihydroimidazo [1, 2-c] thieno [3, 2-e] pyrimidines. Synthesis 2001(14):2119–2123

    Google Scholar 

  • Preston S, Jiao Y, Baell JB, Keiser J, Crawford S, Koehler AV, Wang T, Simpson MM, Kaplan RM, Cowley KJ (2017) Screening of the ‘Open Scaffolds’ collection from Compounds Australia identifies a new chemical entity with anthelmintic activities against different developmental stages of the barber’s pole worm and other parasitic nematodes. Int J Parasitol Drugs Drug Resist 7(3):286–294

    PubMed  PubMed Central  Google Scholar 

  • Preston S, Gasser RB (2018) Working towards new drugs against parasitic worms in a public-development partnership. Trends Parasitol 34(1):4–6

    PubMed  Google Scholar 

  • Rao KV, Balakumar C, Narayana BL, Kishore DP, Rajwinder K, Rao AR (2013) Transesterification of trimethyl orthoacetate: an efficient protocol for the synthesis of 4-alkoxy-2-aminothiophene-3-carbonitriles. Tetrahedron Lett 54(10):1274–1278

    Google Scholar 

  • Raza A, Lamb J, Chambers M, Hunt PW, Kotze AC (2016) Larval development assays reveal the presence of sub-populations showing high-and low-level resistance in a monepantel (Zolvix®)-resistant isolate of Haemonchus contortus. Vet Parasitol 220:77–82

    CAS  PubMed  Google Scholar 

  • Romero-Benavides JC, Ruano AL, Silva-Rivas R, Castillo-Veintimilla P, Vivanco-Jaramillo S, Bailon-Moscoso N (2017) Medicinal plants used as anthelmintics: ethnomedical, pharmacological, and phytochemical studies. Eur J Med Chem 129:209–217

    CAS  PubMed  Google Scholar 

  • Santos FO, Cerqueira APM, Branco A, Batatinha MJM, Botura MB (2019) Anthelmintic activity of plants against gastrointestinal nematodes of goats: a review. Parasitology 146(10):1223–1246

    Google Scholar 

  • Shalaby HA (2013) Anthelmintics resistance; how to overcome it? Iran J Parasitol 8(1):18–32

    PubMed  PubMed Central  Google Scholar 

  • Stear M, Doligalska M, Donskow-Schmelter K (2007) Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology 134(2):139–151

    CAS  PubMed  Google Scholar 

  • Taman A, Azab M (2014) Present-day anthelmintics and perspectives on future new targets. Parasitol Res 113(7):2425–2433

    PubMed  Google Scholar 

  • Taylor CM, Wang Q, Rosa BA, Huang SC-C, Powell K, Schedl T, Pearce EJ, Abubucker S, Mitreva M (2013) Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog 9(8):e1003505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi KD (2013) Essentials of medical pharmacology. Seventh Edition, Jaypee Brothers Medical Publishers (P) Ltd, New Delhi.

  • Tyagi R, Maddirala AR, Elfawal M, Fischer C, Bulman CA, Rosa BA, Gao X, Chugani R, Zhou M, Helander J (2018) Small molecule inhibitors of metabolic enzymes repurposed as a new class of anthelmintics. ACS Infect Dis 4(7):1130–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woods DJ, Lauret C, Geary T (2007) Anthelmintic discovery and development in the animal health industry. Expert Opin Drug Discov 2(Suppl 1):S25–S33

    CAS  PubMed  Google Scholar 

  • Zajíčková M, Nguyen LT, Skálová L, Stuchlíková LR, Matoušková P (2020) Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today 25(2):430–437

    PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Sri K.V. Vishnu Raju, Chairman-Sri Vishnu Educational Society, Dr. D.B. Raju, Director and Dr. K. Prasad, Principal-Shri Vishnu College of Pharmacy for their constant support and encouragement. They also thank Lila Impex Ltd for spectral and elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghu Prasad Mailavaram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We declare that all the co-authors are aware of and approve of the submission.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitikina, S.S., Buddiga, P., Deb, P.K. et al. Synthesis and anthelmintic activity of some novel (E)-2-methyl/propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines. Med Chem Res 29, 1600–1610 (2020). https://doi.org/10.1007/s00044-020-02586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02586-5

Keywords

Navigation