Skip to main content

Advertisement

Log in

Biologically active quinazoline-based hydroxamic acids

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Molecular hybridization has become a new promising way to treat multifactorial diseases with a single compound that acts on multiple targets. The combination of several functional pharmacophore groups in one molecule can lead to a stronger therapeutic effect due to the ability to bind to several targets and possible synergistic interactions. The concept of multifunctional agents is being actively developed and has already produced some encouraging results. The quinazoline cycle and hydroxamic acids are unique pharmacophore groups that contribute to the structure of drug agents widely used in medical chemistry. The combination of these pharmacophores in one molecule leads to promising new compounds, which has been confirmed by many experimental studies in published literature across the world. Hybrid compounds of hydroxamic acids and the quinazoline cycle are a potential basis for the development of effective drugs used in the complex treatment of oncological, infectious and neurological diseases. This review provides information on the most significant developments in this area and discusses the bioactivity of important agents. Compounds with both linear hydroxamic acids and cyclic acids in which a hydroxamate group is integrated in the quinazoline ring are also covered in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abzianidze VV, Prokofieva DS, Chisty LA, Bolshakova KP, Berestetskiy AO, Panikorovskii TL, Bogachenkov AS, Holder AA (2015) Synthesis of natural phaeosphaeride A derivatives and an in-vitro evaluation of their anti-cancer potential. Bioorg Med Chem Lett 25:5566–5569

    CAS  PubMed  Google Scholar 

  • Apfel C, Banner DW, Bur D, Dietz M, Hubschwerlen C, Locher H, Marlin F, Masciadri R, Pirson W, Stalder H (2001) 2-(2-Oxo-1,4-dihydro-2H-quinazolin-3-yl)- and 2-(2,2-Dioxo-1,4-dihydro-2H-2λ6-benzo[1,2,6]thiadiazin-3-yl)-N-hydroxy-acetamides as potent and selective peptide deformylase inhibitors. J Med Chem 44:1847–1852

    CAS  PubMed  Google Scholar 

  • Arrighetti N, Corno C, Gatti L (2015) Drug combinations with HDAC inhibitors in antitumor therapy. Crit Rev Oncog 20:83–117

    PubMed  Google Scholar 

  • Asif M (2014) Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int J Med Chem 2014:1–27

    Google Scholar 

  • Barlaam B, Bird TG, Lambert-van der Brempt C, Campbell D, Foster SJ, Maciewicz R (1999) New α-Substituted succinate-based hydroxamic acids as TNFα convertase inhibitors. J Med Chem 42:4890–4908

    CAS  PubMed  Google Scholar 

  • Beckers T, Mahboobi S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Maier T, Ciossek T, Baer T, Kelter G, Fiebig H, Schmidt M (2012) Chimerically designed HDAC- and tyrosine kinase inhibitors. A series of erlotinib hybrids as dual-selective inhibitors of EGFR, HER2 and histone deacetylases. MedChemComm 3:829

    CAS  Google Scholar 

  • Bérubé G (2016) An overview of molecular hybrids in drug discovery. Expert Opin Drug Dis 11:281–305

    Google Scholar 

  • Billamboz M, Suchaud V, Bailly F, Lion C, Andréola M-L, Christ F, Debyser Z, Cotelle P (2016) 2-hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs) as human immunodeficiency virus type 1 integrase inhibitors: influence of the alkylcarboxamide substitution of position 4. Eur J Med Chem 117:256–268

    CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Disco 5:769–784

    CAS  Google Scholar 

  • Bonola G, Sianesi E (1970) 2,3-Dihydro-4(1H)-quinazolinone derivatives. J Med Chem 13:329–332

    CAS  PubMed  Google Scholar 

  • Bratu M, Nuta DC, Caproiu MT, Missir AV, Limban C, Ileana C, Morusciag L (2014) New acylated derivatives of 2-methyl-4-oxo-quinazolin-3(4H)-yl-acetohydroxamic acid. Farmacia 62:664–673

    CAS  Google Scholar 

  • Catarzi D, Lenzi O, Colotta V, Varano F, Poli D, Filacchioni G, Lingenhöhl K, Ofner S (2010) Pharmacological characterization of some selected 4,5-Dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates and 3-Hydroxyquinazoline-2,4-diones as (S)-2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)-propionic Acid Receptor Antagonists. Chem Pharm Bull 58:908–911

    CAS  PubMed  Google Scholar 

  • Chen J, Sang Z, Jiang Y, Yang C, He L (2018) Design, synthesis, and biological evaluation of quinazoline derivatives as dual HDAC1 and HDAC6 inhibitors for the treatment of cancer. Chem Biol Drug Des 93:232–241

    PubMed  Google Scholar 

  • Chollet A-M, Le Diguarher T, Murray L, Bertrand M, Tucker GC, Sabatini M, Pierré A, Atassi G, Bonnet J, Casara P (2001) General synthesis of α-substituted 3-bisaryloxy propionic acid derivatives as specific mmp inhibitors. Bioorg Med Chem Lett 11:295–299

    CAS  PubMed  Google Scholar 

  • Cianci C, Chung TDY, Meanwell N, Putz H, Hagen M, Colonno RJ, Krystal M (1996) Identification of N-Hydroxamic acid and N-Hydroxyimide compounds that inhibit the influenza virus polymerase. Antivir Chem Chemother 7:353–360

    CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Calabri FR, Filacchioni G, Costagli C, Galli A (2004) 3-Hydroxy-quinazoline-2,4-dione as a useful scaffold to obtain selective Gly/NMDA and AMPA receptor antagonists. Bioorg Med Chem Lett 14:2345–2349

    CAS  PubMed  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Lenzi O, Filacchioni G, Costagli C, Galli A, Ghelardini C, Galeotti N, Gratteri P, Sgrignani J, Deflorian F, Moro S (2006) Structural investigation of the 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione scaffold to obtain AMPA and kainate receptor selective antagonists. Synthesis, pharmacological, and molecular modeling studies. J Med Chem 49:6015–6026

    CAS  PubMed  Google Scholar 

  • Colotta V, Lenzi O, Catarzi D, Varano F, Squarcialupi L, Costagli C, Galli A, Ghelardini C, Pugliese AM, Maraula G, Coppi E, Pellegrini-Giampietro DE, Pedata F, Sabbadin D, Moro S (2012) 3-Hydroxy-1H-quinazoline-2,4-dione derivatives as new antagonists at ionotropic glutamate receptors: molecular modeling and pharmacological studies. Eur J Med Chem 54:470–482

    CAS  PubMed  Google Scholar 

  • Deore RR, Chen GS, Chang P-T, Chern T-R, Lai S-Y, Chuang M-H, Lin JH, Kung FL, Chen CS, Chiou CT, Chern J-W (2012) Discovery of N-Arylalkyl-3-hydroxy-4-oxo-3,4-dihydroquinazolin-2-carboxamide derivatives as HCV NS5B polymerase inhibitors. ChemMedChem 7:850–860

    CAS  PubMed  Google Scholar 

  • Dikii IL, Kris’kiv OS, Chernikh VP, Shemchuk LA, Dubinina NV (2006) Study of antimicrobial activity of quinazolin-4-ones and heterocyclic derivatives. Visn Farmatsii 2:64–67

    Google Scholar 

  • Ding C, Chen S, Zhang C, Hu G, Zhang W, Li L, Chen YZ, Tan C, Jiang Y (2017) Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy. Bioorg Med Chem 25:27–37

    CAS  PubMed  Google Scholar 

  • Falsini M, Squarcialupi L, Catarzi D, Varano F, Betti M, Di Cesare Mannelli L, Tenci B, Ghelardini C, Tanc M, Angeli A, Supuran CT, Colotta V (2017) 3-Hydroxy-1H-quinazoline-2,4-dione as a new scaffold to develop potent and selective inhibitors of the tumor-associated carbonic anhydrases IX and XII. J Med Chem 60:6428–6439

    CAS  PubMed  Google Scholar 

  • Fetisov VI, Kotov AV, Gordeev PB, Bachurin SO, Petrova LN, Luk’janov OA, Martynov IV(1999) Sintez i izuchenie vlijanija prozvodnyh 3-gidroksi-1,2-digidrohinolin-4-onanaglutamat-inducirovannyj zahvat 45Ca2+ sinaptosomami mozga krys [The synthesis and the study of influence of derivatives of 3-hydroxy-1,2-dihydroquinoline-4-one on the glutamate-induced 45Ca2+-uptake by rat brain synaptosomes]. Dokl Akad Nauk Rep Acad Sci 367:776–779

    CAS  Google Scholar 

  • Fortin S, Bérubé G (2013) Advances in the development of hybrid anticancer drugs. Expert Opin Drug Dis 8:1029–1047

    CAS  Google Scholar 

  • Ganesan A (2016) Multitarget drugs: an epigenetic epiphany. ChemMedChem 11:1227–1241

    CAS  PubMed  Google Scholar 

  • Giannini G, Battistuzzi G, Vignola D (2015) Hydroxamic acid based histone deacetylase inhibitors with confirmed activity against the malaria parasite. Bioorg Med Chem Lett 25:459–461

    CAS  PubMed  Google Scholar 

  • Grady RW, Bienen EJ, Clarkson AB (1986) P-alkyloxybenzhydroxamic acids, effective inhibitors of the trypanosome glycerol-3-phosphate oxidase. Mol Biochem Parasit 19:231–240

    CAS  Google Scholar 

  • Gupta SP, Sharma A (2013) Hydroxamic acids. A unique family of chemicals with multiple biological activities. Gupta SP (ed.), Springer-Verlag, Berlin

  • He S, Dong G, Wang Z, Chen W, Huang Y, Li Z, Jiang Y, Liu N, Yao J, Miao Z, Zhang W, Sheng C (2015) Discovery of novel multiacting topoisomerase I/II and histone deacetylase inhibitors. ACS Med Chem Lett 6:239–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemalatha K, Madhumitha G (2016) Synthetic strategy with representation on mechanistic pathway for the therapeutic applications of dihydroquinazolinones. Eur J Med Chem 123:596–630

    CAS  PubMed  Google Scholar 

  • Hesham HM, Lasheen DS, Abouzid KAM (2018) Chimeric HDAC inhibitors: comprehensive review on the HDAC-based strategies developed to combat cancer. Med Res Rev 38:2058–2109

    PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637

    CAS  PubMed  Google Scholar 

  • Hieu DT, Anh DT, Hai P-T, Huong L-T-T, Park EJ, Choi JE, Kang JS, Dung PTP, Han SB, Nam N-H (2018a) Quinazoline-based hydroxamic acids: design, synthesis, and evaluation of histone deacetylase inhibitory effects and cytotoxicity. Chem Biodivers 15:e1800027

    PubMed  Google Scholar 

  • Hieu DT, Anh DT, Tuan NM, Hai P-T, Huong L-T-T, Kim J, Kang JS, Vu TK, Dung PTP, Han SB, Nam NH, Hoa N-D (2018b) Design, synthesis and evaluation of novel N -hydroxybenzamides/ N -hydroxypropenamides incorporating quinazolin-4(3H)-ones as histone deacetylase inhibitors and antitumor agents. Bioorg Chem 76:258–267

    CAS  PubMed  Google Scholar 

  • Ji M, Li Z, Lin Z, Chen L (2018) Antitumor activity of the novel HDAC inhibitor CUDC-101 combined with gemcitabine in pancreatic cancer. Am J Cancer Res 8:2402–2418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung R, Le JY, Wengenmayer F, Wolf E, Kramer M (1985) Mutagenicity studies of a carcinogenic nitrofuran and some analogs. Biochimica Acta 44:485–492

    CAS  Google Scholar 

  • Kerru N, Singh P, Koorbanally N, Raj R, Kumar V (2017) Recent advances (2015-2016) in anticancer hybrids. Eur J Med Chem 142:179–212

    CAS  PubMed  Google Scholar 

  • Khan I, Zaib S, Batool S, Abbas N, Ashraf Z, Iqbal J, Saeed A (2016) Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: an update on the development of synthetic methods and pharmacological diversification. Bioorg Med Chem 24:2361–2381

    CAS  PubMed  Google Scholar 

  • Khohlov PS, Osipov VN, Krivenko VI, Zubairov MM, Roshhin AV, Batuev EA (2011) 2-(2,5-Dimethyl)pyrazolyl-3-hydroxy-4(3H)-quinazolinone possessing antiviral, antibacterial and fungicidal activity and its production method. RU Patent RU2451683, 10 Mar 2011

  • Khohlov PS, Pavlova VV, Shumova TB, Poljanskaja SM (2005) 3-Hydroxy-2-thioxo-4(3h)-quinazolinone possessing fungicide and growth-regulating property and method for it preparing. RU Patent RU2275362, 27 Oct 2005

  • Khokhlov PS, Osipov VN, Roshchin AV (2011) 3-Hydroxy- and 3-alkoxy-2-sulfanylquinazolin-4(3H)-ones: synthesis and reactions with alkylating and acylating agents. Russ Chem Bull 60:153–156

    CAS  Google Scholar 

  • Kobayashi K, Kobayashi Y, Nakamura M, Tamura O, Kogen H (2015) Establishment of relative and absolute configurations of Phaeosphaeride A: total synthesis of ent-Phaeosphaeride A. J Org Chem 80:1243–1248

    CAS  PubMed  Google Scholar 

  • Kotov AV, Zakharychev VV, Smirnov AG, Fetisov VI, Gordeev PB, Luk’yanov OA, Chimishkyan AL, Martynov IV (2001) The fungicidal activity of the 3-hydroxy-1,2,3,4-tetrahydroquinazoline-4-one derivatives and simulation of the structure-activity dependence. Dokl Biochem Biophysics 381:412–414

    CAS  Google Scholar 

  • Lavi O (2015) Redundancy: a critical obstacle to improving cancer therapy. Cancer Res 75:808–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Ganesh T, Diebold BA, Zhu Y, McCoy JW, Smith SME, Sun A, Lambeth JD (2015) Thioxo-dihydroquinazolin-one compounds as novel inhibitors of myeloperoxidase. ACS Med Chem Lett 6:1047–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lou B, Yang K (2003) Molecular diversity of hydroxamic acids. Part II: potential therapeutic applications. Mini-Rev Med Chem 3:609–620

    CAS  PubMed  Google Scholar 

  • Lu W, Baig IA, Sun H-J, Cui C-J, Guo R, Jung I-P, Wang J-G (2015) Synthesis, crystal structure and biological evaluation of substituted quinazolinone benzoates as novel antituberculosis agents targeting acetohydroxyacid synthase. Eur J Med Chem 94:298–305

    CAS  PubMed  Google Scholar 

  • Mahboobi S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Ciossek T, Baer T, Maier T, Beckers T (2010) Novel chimeric histone deacetylase inhibitors: a series of lapatinib hybrides as potent inhibitors of epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and histone deacetylase activity. J Med Chem 53:8546–8555

    CAS  PubMed  Google Scholar 

  • Maloney KN, Hao W, Xu J, Gibbons J, Hucul J, Roll D, Brady SF, Schroeder FC, Clardy J (2006) Phaeosphaeride A, an inhibitor of STAT3-dependent signaling isolated from an Endophytic fungus. Org Lett 8:4067–4070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manal M, Chandrasekar MJN, Gomathi Priya J, Nanjan MJ (2016) Inhibitors of histone deacetylase as antitumor agents: a critical review. Bioorg Chem 67:18–42

    CAS  PubMed  Google Scholar 

  • Meng Q, Li F, Jiang S, Li Z (2013) Novel 64Cu-labeled CUDC-101 for in vivo pet imaging of histone deacetylases. ACS Med Chem Lett 4:858–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mottamal M, Zheng S, Huang T, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20:3898–3941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muri E, Nieto M, Sindelar R, Williamson J (2002) Hydroxamic acids as pharmacological agents. Curr Med Chem 9:1631–1653

    CAS  PubMed  Google Scholar 

  • Musso L, Dallavalle S, Zunino F (2015) Perspectives in the development of hybrid bifunctional antitumour agents. Biochem Pharm 96:297–305

    CAS  PubMed  Google Scholar 

  • Mutule I, Borovika D, Rozenberga E, Romanchikova N, Zalubovskis R, Shestakova I, Trapencieris P (2014) 5-Membered cyclic hydroxamic acids as HDAC inhibitors. J Enzym Inhib Med Chem 30:216–223

    Google Scholar 

  • Nara H, Kaieda A, Sato K, Naito T, Mototani H, Oki H, Yamamoto Yl, Kuno H, Santou T, Kanzaki N, Terauchi J, Uchikawa O, Kori M (2017) Discovery of novel, highly potent, and selective matrix metalloproteinase (MMP)-13 inhibitors with a 1,2,4-triazol-3-yl Moiety as a zinc binding group using a structure-based design approach. J Med Chem 60:608–626

    CAS  PubMed  Google Scholar 

  • Nara H, Sato K, Kaieda A, Oki H, Kuno H, Santou T, Kanzaki N, Terauchi J, Uchikawa O, Kori M (2016) Design, synthesis, and biological activity of novel, potent, and highly selective fused pyrimidine-2-carboxamide-4-one-based matrix metalloproteinase (MMP)-13 zinc-binding inhibitors. Bioorg Med Chem 24:6149–6165

    CAS  PubMed  Google Scholar 

  • Nepali K, Sharma S, Sharma M, Bedi PMS, Dhar KL (2014) Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem 77:422–487

    CAS  PubMed  Google Scholar 

  • Niemeyer HM (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the gramineae. Phytochemistry 27:3349–3358

    CAS  Google Scholar 

  • Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J Agric Food Chem 57:1677–1696

    CAS  PubMed  Google Scholar 

  • Papavassiliou KA, Papavassiliou AG (2013) Histone deacetylases inhibitors: conjugation to other anti-tumour pharmacophores provides novel tools for cancer treatment. Expert Opin Inv Drug 23:291–294

    Google Scholar 

  • Peng F-W, Wu T-T, Ren Z-W, Xue J-Y, Shi L (2015) Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase. Bioorg Med Chem Lett 25:5137–5141

    CAS  PubMed  Google Scholar 

  • Peng F-W, Xuan J, Wu T-T, Xue J-Y, Ren Z-W, Liu D-K, Wang XQ, Chen XH, Zhang JW, Xu YG, Shi L (2016) Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC. Eur J Med Chem 109:1–12

    CAS  PubMed  Google Scholar 

  • Pryde DC, Webster R, Butler SL, Murray EJ, Whitby K, Pickford C, Westby M, Palmer MJ, Bull DJ, Vuong H, Blakemore DC, Stead D, Ashcroft C, Gardner I, Bru C, Cheung W-Y, Roberts IO, Mortone J, Bissell RA (2013) Discovery of an HIV integrase inhibitor with an excellent resistance profile. MedChemComm 4:709

    CAS  Google Scholar 

  • Qian Ch, Cai X, Zhai H (2009) Antiproliferative agents containing a zinc binding moiety. PCT International Application No. WO 2009036057 A1

  • Qiu X, Xiao X, Li N, Li Y (2017) Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuro-Psychoph 72:60–72

    CAS  Google Scholar 

  • Rani R, Granchi C (2015) Bioactive heterocycles containing endocyclic N-hydroxy groups. Eur J Med Chem 97:505–524

    CAS  PubMed  Google Scholar 

  • Rao M, Valentini D, Zumla A, Maeurer M (2018) Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat) in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis. Int J Infect Dis 69:78–84

    CAS  PubMed  Google Scholar 

  • Rao MJ (1992) Antifungal potential of binary and mixed-ligand complexes of N,2′-diphenyl acetohydroxamic acid. J Inorg Biochem 46:207–214

    CAS  PubMed  Google Scholar 

  • Schobert R, Biersack B (2017) Multimodal HDAC inhibitors with improved anticancer activity Curr Cancer Drug Tar 18:39–56

    Google Scholar 

  • Seo S-Y (2012) Multi-targeted hybrids based on HDAC inhibitors for anti-cancer drug discovery. Arch Pharm Res 35:197–200

    CAS  PubMed  Google Scholar 

  • Shagufta S, Ahmad I (2017) An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MedChemComm 8:871–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao M, He L, Zheng L, Huang L, Zhou Y, Wang T, Chen Y, Shen M, Wang F, Yang Z, Chen L (2017) Structure-based design, synthesis and in vitro antiproliferative effects studies of novel dual BRD4/HDAC inhibitors. Bioorg Med Chem Lett 27:4051–4055

    CAS  PubMed  Google Scholar 

  • Shimizu T, LoRusso PM, Papadopoulos KP, Patnaik A, Beeram M, Smith LS, Rasco DW, Mays TA, Chambers G, Ma A, Wang J, Laliberte R, Voi M, Tolcher AW (2014) Phase I first-in-human study of CUDC-101, a multi-targeted inhibitor of HDACs, EGFR and HER2 in patients with advanced solid tumors. Clin Cancer Res 20:5032–5040

    CAS  PubMed  Google Scholar 

  • Sun H, Mediwala SN, Szafran AT, Mancini MA, Marcelli M (2016) CUDC-101, a novel inhibitor of full-length androgen receptor (flAR) and androgen receptor variant 7 (AR-V7) activity: mechanism of action and in vivo efficacy. Hormones Cancer 7:196–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suraweera A, O’Byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi Front Oncol 8:1–15

    Google Scholar 

  • Tang J, Vernekar SKV, Chen Y-L, Miller L, Huber AD, Myshakina N, Wang Z (2017) Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase. Eur J Med Chem 133:85–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TP, Ellsworth EL, Stier MA, Domagala JM, Hollis Showalter HD, Gracheck SJ, Singh R (2004) Synthesis and structural-activity relationships of 3-hydroxyquinazoline-2,4-dione antibacterial agents. Bioorg Med Chem Lett 14:4405–4409

    CAS  PubMed  Google Scholar 

  • Tumey LN, Bom D, Huck B, Gleason E, Wang J, Silver D, Bennani YL (2005) The identification and optimization of a N-hydroxy urea series of flap endonuclease 1 inhibitors. Bioorg Med Chem Lett 15:277–281

    CAS  PubMed  Google Scholar 

  • Wang D, Zhu X, Cui C, Dong M, Jiang H, Li Z, Wang J-G (2013) Discovery of novel acetohydroxyacid synthase inhibitors as active agents against Mycobacterium tuberculosis by virtual screening and bioassay. J Chem Inf Model 53:343–353

    CAS  PubMed  Google Scholar 

  • Wang J, Pursell NW, Samson MES, Atoyan R, Ma AW, Selmi A, Xu W, Cai X, Voi M, Savagner P, Lai C-J (2013) Potential advantages of CUDC-101, a Multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion. Mol Cancer Ther 12:925–936

    CAS  PubMed  Google Scholar 

  • Xu K, Dai X-L, Huang H-C, Jiang Z-F (2011) Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxid Med Cell Longev 2011:1–5

    Google Scholar 

  • Yang Z, Wang T, Wang F, Niu T, Liu Z, Chen X, Chen L (2015) Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer. J Med Chem 59:1455–1470

    PubMed  Google Scholar 

  • Yoon S, Eom GH (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J 52:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C-W, Chang P-T, Hsin L-W, Chern J-W (2013) Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer’s disease. J Med Chem 56:6775–6791

    CAS  PubMed  Google Scholar 

  • Zamora R, Grzesiok A, Weber H, Feelisch M (1995) Oxidative release of nitric oxide accounts for guanylyl cyclase stimulating, vasodilator and anti-platelet activity of Piloty’s acid: a comparison with Angeli’s salt. Biochemical J 312:333–339

    CAS  Google Scholar 

  • Zang L, Kondengaden SM, Zhang Q, Li X, Sigalapalli DK, Kondengadan SM, Wang PG (2017) Structure based design, synthesis and activity studies of small hybrid molecules as HDAC and G9a dual inhibitors. Oncotarget 8:63187–63207

  • Zhang L, Han Y, Jiang Q, Wang C, Chen X, Li X, Xu W (2014) Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy. Med Res Rev 35:63–84

    PubMed  Google Scholar 

  • Zhang Q, Li Y, Zhang B, Lu B, Li J (2017) Design, synthesis and biological evaluation of novel histone deacetylase inhibitors incorporating 4-aminoquinazolinyl systems as capping groups. Bioorg Med Chem Lett 27:4885–4888

    CAS  PubMed  Google Scholar 

  • Zhang X, Su M, Chen Y, Li J, Lu W (2013) The design and synthesis of a new class of RTK/HDAC dual-targeted inhibitors. Molecules 18:6491–6503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-M, Fan X, Yang S-M, Scannevin RH, Burke SL, Rhodes KJ, Jackson PF (2008a) Syntheses and in vitro evaluation of arylsulfone-based MMP inhibitors with heterocycle-derived zinc-binding groups (ZBGs). Bioorg Med Chem Lett 18:405–408

    CAS  PubMed  Google Scholar 

  • Zhang Y-M, Xiang B, Yang Sh-M, Rhodes K, Scannevin R, Jackson P, Chakravarty D, Karnachi P (2008b) Heterocyclic derived metalloprotease inhibitors. PCT International Application No. WO2008045668, 63187–63207

  • Zhao XZ, Smith SJ, Métifiot M, Johnson BC, Marchand C, Pommier Y, Hughes SH, Burke TR (2014) Bicyclic 1-hydroxy-2-oxo-1,2-dihydropyridine-3-carboxamide-containing HIV-1 integrase inhibitors having high antiviral potency against cells harboring raltegravir-resistant integrase mutants. J Med Chem 57:1573–1582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Xie X, Liu G (2013) Quinazoline-2,4(1H,3H)-diones inhibit the growth of multiple human tumor cell lines. Mol Diversity 17:197–219

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-11-2018-172 dated 03.12.18). Unique project identifier RFMEFI62418X0051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily N. Osipov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, V.N., Khachatryan, D.S. & Balaev, A.N. Biologically active quinazoline-based hydroxamic acids. Med Chem Res 29, 831–845 (2020). https://doi.org/10.1007/s00044-020-02530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02530-7

Keywords

Navigation