Design, synthesis, and screening of sulfonylurea-derived NLRP3 inflammasome inhibitors

  • Amol A. KulkarniEmail author
  • Ayyiliath M. Sajith
  • Trevor T. Duarte
  • Anahis Tena
  • Charles T. Spencer
  • J. Phillip Bowen
Original Research


Inflammasomes are multiprotein assemblies that produce robust inflammatory responses upon stimulation with pathogen- and/or danger-associated molecular patterns. Uncontrolled inflammasome activation has been linked to the pathophysiology of a wide array of disorders including life-threatening pathogenic infections, e.g., Francisella tularensis. There has been a great deal of interest in the development of small molecule inflammasome inhibitors. Using computational modeling based on chalcone derivatives, we have developed novel tertiary sulfonylurea compounds as inhibitors of the NLRP3 inflammasome. The polar enone functional alert of chalcone was replaced with a sulfonylurea scaffold while maintaining the relative positions of the two aromatic rings. These compounds were evaluated for their ability to inhibit NLRP3 and AIM2 inflammasome activation triggered by Francisella tularensis infection.



This work was supported in part by the District of Columbia Center for AIDS Research (DC CFAR; AI117970) and Research Centers in Minority Institutions (RCMI), Howard University. Biological research reported in this article was supported by the National Institute of General Medical Sciences of the National Institutes of Health under linked Award Numbers RL5GM118969, TL4GM118971 and UL1GM118970. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2019_2466_MOESM1_ESM.docx (41 kb)
Supplementary Information


  1. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1β-processing inflammasome with increased activity in muckle–wells autoinflammatory disorder. Immunity 20(3):319–325CrossRefGoogle Scholar
  2. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818CrossRefGoogle Scholar
  3. Atianand MK, Duffy EB, Shah A, Kar S, Malik M, Harton JA (2011) Francisella tularensis reveals a disparity between human and mouse NLRP3 inflammasome activation. J Biol Chem 286(45):39033–39042CrossRefGoogle Scholar
  4. Banerjee S, Ji C, Mayfield JE, Goel A, Xiao J, Dixon JE, Guo X (2018) Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc Natl Acad Sci U S A 115(32):8155–8160CrossRefGoogle Scholar
  5. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, Martinez CM, Amores-Iniesta J, Compan V, Barbera-Cremades M, Yague J, Ruiz-Ortiz E, Anton J, Bujan S, Couillin I, Brough D, Arostegui JI, Pelegrin P (2014) The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 15(8):738–748CrossRefGoogle Scholar
  6. Capuzzi SJ, Muratov EN, Tropsha A (2017) Phantom PAINS: problems with the utility of alerts for pan-assay interference compounds. J Chem Inform Model 57(3):417–427CrossRefGoogle Scholar
  7. Chang YP, Ka SM, Hsu WH, Chen A, Chao LK, Lin CC, Hsieh CC, Chen MC, Chiu HW, Ho CL (2015) Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J Cell Physiol 230(7):1567–1579CrossRefGoogle Scholar
  8. Coll RC, Robertson AAB, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Nunez G, Latz E, Kastner DL, Mills KHG, Masters SL, Schroder K, Cooper MA, O’Neill LAJ (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255CrossRefGoogle Scholar
  9. Collazo CM, Sher A, Meierovics AI, Elkins KL (2006) Myeloid differentiation factor-88 (MyD88) is essential for control of primary in vivo Francisella tularensis LVS infection, but not for control of intra-macrophage bacterial replication. Microbes Infect 8(3):779–790CrossRefGoogle Scholar
  10. Deck LM, Hunsaker LA, Vander Jagt TA, Whalen LJ, Royer RE, Vander Jagt DL (2018) Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. Eur J Med Chem 143:854–865CrossRefGoogle Scholar
  11. Granata S, Masola V, Zoratti E, Scupoli MT, Baruzzi A, Messa M, Sallustio F, Gesualdo L, Lupo A, Zaza G (2015) NLRP3 inflammasome activation in dialyzed chronic kidney disease patients. PLoS ONE 10(3):e0122272CrossRefGoogle Scholar
  12. Henry T, Monack DM (2007) Activation of the inflammasome upon Francisella tularensis infection: interplay of innate immune pathways and virulence factors. Cell Microbiol 9(11):2543–2551CrossRefGoogle Scholar
  13. Honda H, Nagai Y, Matsunaga T, Okamoto N, Watanabe Y, Tsuneyama K, Hayashi H, Fujii I, Ikutani M, Hirai Y, Muraguchi A, Takatsu K (2014) Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J Leukoc Biol 96(6):1087–1100CrossRefGoogle Scholar
  14. Ke P, Shao BZ, Xu ZQ, Chen XW, Wei W, Liu C (2017) Activating alpha7 nicotinic acetylcholine receptor inhibits NLRP3 inflammasome through regulation of beta-arrestin-1. CNS Neurosci Ther 23(11):875–884CrossRefGoogle Scholar
  15. Kumari N, Kulkarni AA, Lin X, McLean C, Ammosova T, Ivanov A, Hipolito M, Nekhai S, Nwulia E (2015) Inhibition of HIV-1 by curcumin A, a novel curcumin analog. Drug Des Dev Ther 9:5051Google Scholar
  16. Lamkanfi M, Mueller JL, Vitari AC, Misaghi S, Fedorova A, Deshayes K, Lee WP, Hoffman HM, Dixit VM (2009) Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 187(1):61–70CrossRefGoogle Scholar
  17. Lema C, Varela-Ramirez A, Aguilera RJ (2011) Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds. Curr Cell Biochem 1(1):1–14PubMedPubMedCentralGoogle Scholar
  18. Mares CA, Ojeda SS, Morris EG, Li Q, Teale JM (2008) Initial delay in the immune response to Francisella tularensis is followed by hypercytokinemia characteristic of severe sepsis and correlating with upregulation and release of damage-associated molecular patterns. Infect Immun 76(7):3001–3010CrossRefGoogle Scholar
  19. Mariathasan S, Weiss DS, Dixit VM, Monack DM (2005) Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med 202(8):1043–1049CrossRefGoogle Scholar
  20. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10(2):417–426CrossRefGoogle Scholar
  21. Periasamy S, Le HT, Duffy EB, Chin H, Harton JA (2016) Inflammasome-Independent NLRP3 restriction of a protective early neutrophil response to pulmonary tularemia. PLOS Pathog 12(12):e1006059CrossRefGoogle Scholar
  22. Petrilli V, Dostert C, Muruve DA, Tschopp J (2007) The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19(6):615–622CrossRefGoogle Scholar
  23. Pro S (2018) Wavefunction Inc. Irvine, CA, USAGoogle Scholar
  24. Rathinam VAK, Fitzgerald KA (2016) Inflammasome complexes: emerging mechanisms and effector functions. Cell 165(4):792–800CrossRefGoogle Scholar
  25. Robinson TP, Ehlers T, Hubbard Iv RB, Bai X, Arbiser JL, Goldsmith DJ, Bowen JP (2003) Design, synthesis, and biological evaluation of angiogenesis inhibitors: aromatic enone and dienone analogues of curcumin. Bioorg Med Chem Lett 13(1):115–117CrossRefGoogle Scholar
  26. Robinson TP, Hubbard IV RB, Ehlers TJ, Arbiser JL, Goldsmith DJ, Bowen JP (2005) Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg Med Chem 13(12):4007–4013CrossRefGoogle Scholar
  27. Sharma J, Mares CA, Li Q, Morris EG, Teale JM (2011) Features of sepsis caused by pulmonary infection with Francisella tularensis Type A strain. Microb Pathog 51(1–2):39–47CrossRefGoogle Scholar
  28. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, Elliston KO, Ayala JM, Casano FJ, Chin J, Ding GJF, Egger LA, Gaffney EP, Limjuco G, Palyha OC, Raju SM, Rolando AM, Salley JP, Yamin T-T, Lee TD, Shively JE, MacCross M, Mumford RA, Schmidt JA, Tocci MJ (1992) A novel heterodimeric cysteine protease is required for interleukin-1[beta]processing in monocytes. Nature 356(6372):768–774CrossRefGoogle Scholar
  29. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76(1):16–32CrossRefGoogle Scholar
  30. Weiss DS, Henry T, Monack DM (2007) Francisella tularensis: activation of the inflammasome. Ann NY Acad Sci 1105:219–237CrossRefGoogle Scholar
  31. Xu Q, Kulkarni AA, Sajith AM, Hussein D, Brown D, Güner OF, Reddy MD, Watkins EB, Lassegue B, Griendling KK (2018) Design, synthesis, and biological evaluation of inhibitors of the NADPH oxidase, Nox4. Bioorg Med Chem 26(5):989–998CrossRefGoogle Scholar
  32. Yin H, Guo Q, Li X, Tang T, Li C, Wang H, Sun Y, Feng Q, Ma C, Gao C (2018) Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J Immunol 200(8):2835–2846CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Amol A. Kulkarni
    • 1
    Email author
  • Ayyiliath M. Sajith
    • 1
  • Trevor T. Duarte
    • 2
  • Anahis Tena
    • 2
  • Charles T. Spencer
    • 2
  • J. Phillip Bowen
    • 3
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyHoward UniversityWashingtonUSA
  2. 2.Department of Biological SciencesUniversity of Texas at El PasoEl PasoUSA
  3. 3.Department of Pharmaceutical Sciences, College of PharmacyMercer UniversityAtlantaUSA

Personalised recommendations