Protective effects of hederagenic acid on PC12 cells against the OGD/R-induced apoptosis via activating Nrf2/ARE signaling pathway

  • Huankai Yao
  • Yeling Liu
  • Guihua Zhu
  • Yinyin Duan
  • Huiling Wu
  • Yan LiEmail author
Original Research


Cerebral ischemic stroke is a severe cause of disability and death among people worldwide. The occlusion of cerebral blood flow has resulted in the infarction due to the oxygen and glucose deprivation. Though timely reperfusion can reduce the infarct size, the oxidative stress triggered in ischemia and reperfusion will induce apoptosis of neurons in penumbra. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating the expression of antioxidant enzymes through binding to antioxidant response elements (ARE). The activation of Nrf2/ARE pathway can protect neurons against oxidative stress. To discover novel drugs targeting cerebral ischemic stroke, we have assessed the protective effects of hederagenic acid on PC12 cells injured by oxygen and glucose deprivation/restoration (OGD/R) and explored the possible mechanisms. The results showed hederagenic acid could enhance the survival of PC12 cells exposed to OGD/R. Further exploration has revealed oxidative stress and mitochondrial dysfunction in PC12 cells have been attenuated by hederagenic acid. Meanwhile, the apoptosis in PC12 cells has been inhibited significantly. In addition, activation of Nrf2/ARE pathway by hederagenic acid was observed herein, which indicated this cascade was involved in the protective effects. These results can provide proofs for the further investigation in vivo and the discovery of new drugs targeting cerebral ischemic stroke.


Hederagenic acid Ischemic stroke PC12 cells Apoptosis Nrf2/ARE pathway 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agarwal SK, Rastogi RP (1974) Hederagenic acid and other constituents of Viburnum erubescens. Phytochemistry 13:666–668CrossRefGoogle Scholar
  2. Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 4:461–470PubMedCrossRefGoogle Scholar
  3. Bocci V, Valacchi G (2015) Nrf2 activation as target to implement therapeutic treatments. Front Chem 3:4PubMedPubMedCentralCrossRefGoogle Scholar
  4. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–90PubMedCrossRefGoogle Scholar
  5. Chao XD, Ma YH, Luo P, Cao L, Lau WB, Zhao BC, Han F, Liu W, Ning WD, Su N, Zhang L, Zhu J, Fei Z, Qu Y (2013) Up-regulation of heme oxygenase-1 attenuates brain damage after cerebral ischemia via simultaneous inhibition of superoxide production and preservation of NO bioavailability. Exp Neurol 239:163–169PubMedCrossRefGoogle Scholar
  6. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517PubMedPubMedCentralCrossRefGoogle Scholar
  7. Feng L, Gao J, Liu Y, Shi J, Gong Q (2018) Icariside II alleviates oxygen-glucose deprivation and reoxygenation-induced PC12 cell oxidative injury by activating Nrf2/SIRT3 signaling pathway. Biomed Pharmacother 103:9–17PubMedCrossRefGoogle Scholar
  8. Fisher M, Saver JL (2015) Future directions of acute ischaemic stroke therapy. Lancet Neurol 14:758–767PubMedCrossRefGoogle Scholar
  9. Galluzzi L, Morselli E, Kepp O, Kroemer G (2009) Targeting post-mitochondrial effectors of apoptosis for neuroprotection. Biochim Biophys Acta 1787:402–413PubMedCrossRefGoogle Scholar
  10. Greca MD, Fiorentino A, Monaco P, Lucio P (1994) Polyoxygenated oleanane triterpenes from Hydrocotyle ranunculoides. Phytochemistry 35:201–204CrossRefGoogle Scholar
  11. Greenlund LJ, Deckwerth TL, Johnson Jr EM (1995) Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14:303–315PubMedCrossRefGoogle Scholar
  12. Lee CW, Park SM, Zhao R, Lee C, Chun W, Son Y, Kim SH, Jung JY, Jegal KH, Cho IJ, Ku SK, Kim YW, Ju SA, Kim SC, An WG (2015) Hederagenin, a major component of Clematis mandshurica Ruprecht root, attenuates inflammatory responses in RAW 264.7 cells and in mice. Int Immunopharmacol 29:528–537PubMedCrossRefGoogle Scholar
  13. Li JL, Wu L, Wu J, Feng HX, Wang HM, Fu Y, Zhang RJ, Zhang HY, Zhao WM (2016) Caffeoyl triterpenoid esters as potential anti-ischemic stroke agents from Celastrus orbiculatus. J Nat Prod 79:2774–2779PubMedCrossRefGoogle Scholar
  14. Li L, Zhang X, Cui L, Wang L, Liu H, Ji H, Du Y (2013) Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res 1497:32–39.PubMedCrossRefGoogle Scholar
  15. Li Y, Zhang W, Chen C, Zhang C, Duan J, Yao H, Wei Q, Meng A, Shi J (2018) Inotodiol protects PC12 cells against injury induced by oxygen and glucose deprivation/restoration through inhibiting oxidative stress and apoptosis. J Appl Biomed 16:126–132CrossRefGoogle Scholar
  16. Liu L, Locascio LM, Doré S (2019) Critical Role of Nrf2 in experimental ischemic stroke. Front Pharm 10:153CrossRefGoogle Scholar
  17. Liu BX, Zhou JY, Li Y, Zou X, Wu J, Gu JF, Yuan JR, Zhao BJ, Feng L, Jia XB, Wang RP (2014) Hederagenin from the leaves of ivy (Hedera helix L.) induces apoptosis in human LoVo colon cells through the mitochondrial pathway. BMC Complement Alter Med 14:412CrossRefGoogle Scholar
  18. Liu X, Zhu X, Chen M, Ge Q, Shen Y, Pan S (2016) Resveratrol protects PC12 cells against OGD/R-induced apoptosis via the mitochondrial-mediated signaling pathway. Acta Biochim Biophys Sin 48:342–353PubMedCrossRefGoogle Scholar
  19. Loboda A, Rojczyk-Golebiewska E, Bednarczyk-Cwynar B, Lucjusz Z, Jozkowicz A, Dulak J (2012) Targeting nrf2-mediated gene transcription by triterpenoids and their derivatives. Biomol Ther 20:499–505CrossRefGoogle Scholar
  20. Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–1131PubMedCrossRefGoogle Scholar
  21. Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J (2019) Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 162:132–146PubMedCrossRefGoogle Scholar
  22. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66PubMedCrossRefGoogle Scholar
  23. Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109:133–138PubMedPubMedCentralCrossRefGoogle Scholar
  24. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99PubMedCrossRefGoogle Scholar
  25. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44PubMedCrossRefGoogle Scholar
  26. Pandian JD, Gall SL, Kate MP, Silva GS, Akinyemi RO, Ovbiagele BI, Lavados PM, Gandhi DBC, Thrift AG (2018) Prevention of stroke: a global perspective. Lancet 392:1269–1278PubMedCrossRefGoogle Scholar
  27. Pasi S, Aligiannis N, Pratsinis H, Skaltsounis AL, Chinou IB (2009) Biologically active triterpenoids from Cephalaria ambrosioides. Planta Med 75:163–167PubMedCrossRefGoogle Scholar
  28. Peng Z, Wang S, Chen G, Cai M, Liu R, Deng J, Liu J, Zhang T, Tan Q, Hai C (2015) Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities andinhibiting apoptosis pathway. Neurochem Res 40:661–673PubMedCrossRefGoogle Scholar
  29. Ren J, Fan C, Chen N, Huang J, Yang Q (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in Rats. Neurochem Res 36:2352–2362PubMedCrossRefGoogle Scholar
  30. Rio DD, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328PubMedCrossRefGoogle Scholar
  31. Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, González M, Chan PH (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31:105–116PubMedCrossRefGoogle Scholar
  32. Savitz SI, Baron JC, Yenari MA, Sanossian N, Fisher M (2017) Reconsidering neuroprotection in the reperfusion era. Stroke 48:3413–3419PubMedCrossRefGoogle Scholar
  33. Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802:80–91PubMedCrossRefGoogle Scholar
  34. Surh YJ, Kundu JK, Na HK (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74:1526–1539PubMedCrossRefGoogle Scholar
  35. Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195:158–167PubMedCrossRefGoogle Scholar
  36. Wu AG, Zeng W, Wong VK, Zhu YZ, Lo AC, Liu L, Law BY (2017) Hederagenin and α-hederin promote degradation of proteins in neurodegenerative diseases and improve motor deficits in MPTP-mice. Pharm Res 115:25–44CrossRefGoogle Scholar
  37. Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J (2006) Cross-talk between calcium and reactive oxygen species signaling. Acta Pharm Sin 27:821–826CrossRefGoogle Scholar
  38. Yao H, Duan J, Wang J, Li Y (2012) Triterpenoids and their saponins from the roots of Kalopanax septemlobus. Biochem Syst Ecol 42:14–17CrossRefGoogle Scholar
  39. Yao H, Yuan Z, Wei G, Chen C, Duan J, Li Y, Wang Y, Zhang C, Liu Y (2017) Thevetiaflavone from Wikstroemi indica ameliorates PC12 cells injury induced by OGD/R via improving ROS-mediated mitochondrial dysfunction. Mol Med Rep 16:9197–9202PubMedCrossRefPubMedCentralGoogle Scholar
  40. Yao H, Zhang W, Wu H, Yang M, Wei P, Ma H, Duan J, Zhang C, Li Y (2019) Sikokianin A from Wikstroemia indica protects PC12 cells against OGD/R induced injury via inhibiting oxidative stress and activating Nrf2. Nat Prod Res 33:3450–3453PubMedCrossRefGoogle Scholar
  41. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59PubMedCrossRefGoogle Scholar
  42. Zhang W, Song JK, Yan R, Li L, Xiao ZY, Zhou WX, Wang ZZ, Xiao W, Du GH (2018) Diterpene ginkgolides protect against cerebral ischemia/reperfusion damage in rats by activating Nrf2 and CREB through PI3K/Akt signaling. Acta Pharm Sin 39:1259–1272CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Huankai Yao
    • 1
  • Yeling Liu
    • 2
  • Guihua Zhu
    • 2
  • Yinyin Duan
    • 1
  • Huiling Wu
    • 1
  • Yan Li
    • 1
    Email author
  1. 1.School of Pharmacy & Jiangsu Key Laboratory New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouChina
  2. 2.Taian City Central HospitalTaianChina

Personalised recommendations