Synthesis, Type II diabetes inhibitory activity, antimicrobial evaluation and docking studies of indeno[1,2-c]pyrazol-4(1H)-ones

  • Satbir MorEmail author
  • Suchita Sindhu
Original Research


We report a convenient and efficient synthesis of indeno[1,2-c]pyrazol-4(1H)-ones (4a‒o) by the reaction of a variety of 2-acyl-(1H)-indene-1,3(2H)-diones (1) and 2-hydrazinylbenzo[d]thiazole/2-hydrazinyl-6-substitutedbenzo[d]thiazoles (2) in the presence of glacial acetic acid in good yields. The structure of the compounds thus prepared were confirmed by analytical and spectral (FT-IR, 1H NMR, 13C NMR, and HRMS) techniques. All the synthesized indeno[1,2-c]pyrazol-4(1H)-ones (4a‒o) were assayed for their in vitro Type II diabetes inhibitory activity by using Acarbose as standard drug and in vitro antimicrobial activity utilizing Streptomycin and Fluconazole as reference drugs. Among the synthesized derivatives, 4e (IC50 = 6.71 μg/mL) was found to be more potent against α-glucosidase enzyme as compared with the standard Acarbose (IC50 = 9.35 μg/mL) and 4i (IC50 = 11.90 μg/mL) exhibited good inhibitory activity against α-amylase enzyme as compared with the standard Acarbose (IC50 = 22.87 μg/mL). Also, all the titled compounds showed good antimicrobial activity. In addition, in vitro α-glucosidase and α-amylase inhibition were supported by docking studies performed on the derivatives 4e and 4o, respectively.


Indeno[1,2-c]pyrazol-4(1H)-ones α-Glucosidase α-Amylase Antibacterial Antifungal Molecular docking 



The authors are grateful to the Council of Scientific and Industrial Research, New Delhi, India for providing financial support (CSIR No. 09/752(0060)/2016-EMR-I).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2019_2457_MOESM1_ESM.pdf (3.9 mb)
Supplementary Information


  1. Ahsan MJ, Samy JG, Soni S, Jain N, Kumar L, Sharma LK, Prasad R (2011) Discovery of novel antitubercular 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues. Bioorg Med Chem Lett 21(18):5259–5261PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahsan MJ, Govindasamy J, Khalilullah H, Mohan G, Stables JP, Pannecouque C, De Clercq E (2012) POMA analyses as new efficient bioinformatics platform to predict and optimise bioactivity of synthesized 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues. Bioorg Med Chem Lett 22(23):7029–7035PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ajiboye BO, Ojo OA, Adeyonu O, Imiere O, Olayide I, Fadaka A, Oyinloye BE (2016) Inhibitory effect on key enzymes relevant to acute type-2 diabetes and antioxidative activity of ethanolic extract of artocarpus heterophyllus stem bark. J Acute Dis 5(5):423–429CrossRefGoogle Scholar
  4. Amnerkar ND, Bhusari KP (2010) Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur J Med Chem 45(1):149–159PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bhat M, Belagali SL (2016) Guanidinyl benzothiazole derivatives: Synthesis and structure activity relationship studies of a novel series of potential antimicrobial and antioxidants. Res Chem Intermed 42(7):6195–6208CrossRefGoogle Scholar
  6. Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69:55–60CrossRefGoogle Scholar
  7. Carvalho VF, Barreto EO, Serra MF, Cordeiro RS, Martins MA, Fortes ZB, e Silva PM (2006) Aldose reductase inhibitor zopolrestat restores allergic hyporesponsiveness in alloxan-diabetic rats. Eur J Pharm 549(1):173–178CrossRefGoogle Scholar
  8. Chaudhry F, Naureen S, Huma R, Shaukat A, al-Rashida M, Asif N, Khan MA (2017) In search of new α-glucosidase inhibitors: Imidazolylpyrazole derivatives. Bioorg Chem 71:102–109PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chugunova E, Boga C, Sazykin I, Cino S, Micheletti G, Mazzanti A, Kostina N (2015) Synthesis and antimicrobial activity of novel structural hybrids of benzofuroxan and benzothiazole derivatives. Eur J Med Chem 93:349–359PubMedCrossRefPubMedCentralGoogle Scholar
  10. Doddaramappa SD, Rai KL, Srikantamurthy N, Chethan J (2015) Novel 5-functionalized-pyrazoles: synthesis, characterization and pharmacological screening. Bioorg Med Chem Lett 25(17):3671–3675PubMedCrossRefPubMedCentralGoogle Scholar
  11. Gabr MT, El-Gohary NS, El-Bendary ER, El-Kerdawy MM (2015) New series of benzothiazole and pyrimido[2,1-b]benzothiazole derivatives: synthesis, antitumor activity, EGFR tyrosine kinase inhibitory activity and molecular modeling studies. Med Chem Res 24(2):860–878CrossRefGoogle Scholar
  12. Huang G, Huang H (2019) Synthesis, antiasthmatic, and insecticidal/antifungal activities of allosamidins. J Enzym Inhib Med Chem 34(1):1226–1232CrossRefGoogle Scholar
  13. International Diabetes Foundation (2017) IDF diabetes atlas. 8th ed. International Diabetes Foundation, BrusselsGoogle Scholar
  14. Kamal A, Syed MAH, Mohammed SM (2015) Therapeutic potential of benzothiazoles: a patent review (2010–2014). Expert Opin Ther Pat 25(3):335–349PubMedCrossRefPubMedCentralGoogle Scholar
  15. Khan I, Garikapati KR, Setti A, Shaik AB, Makani VKK, Shareef MA, Kumar CG (2019) Design, synthesis, in silico pharmacokinetics prediction and biological evaluation of 1,4-dihydroindeno[1,2-c]pyrazole chalcone as EGFR/Akt pathway inhibitors. Eur J Med Chem 163:636–648PubMedCrossRefPubMedCentralGoogle Scholar
  16. Khan I, Shareef MA, Kumar CG (2019) An overview on the synthetic and medicinal perspectives of indenopyrazoles Eur J Med Chem 178:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  17. Keri RS, Patil MR, Patil SA, Budagumpi S (2015) A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur J Med Chem 89:207–251PubMedCrossRefPubMedCentralGoogle Scholar
  18. Kim MB, O’Brien TE, Moore JT, Anderson DE, Foss MH, Weibel DB, Shaw JT (2012) The synthesis and antimicrobial activity of heterocyclic derivatives of totarol. ACS Med Chem Lett 3(10):818–822PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kumar P, Duhan M, Kadyan K, Sindhu J, Kumar S, Sharma H (2017) Synthesis of novel inhibitors of α-amylase based on the thiazolidine-4-one skeleton containing a pyrazole moiety and their configurational studies. Med Chem Comm 8(7):1468–1476CrossRefGoogle Scholar
  20. Lemke TL, Abebe E, Moore PF, Carty TJ (1989) Indeno [1,2‐c] pyrazolone acetic acids as semirigid analogues of the nonsteroidal anti‐inflammatory drugs. J Pharm Sci 78(4):343–347PubMedCrossRefPubMedCentralGoogle Scholar
  21. Lemke TL, Cramer MB, Shanmugam K (1978) Heterocyclic tricycles as potential CNS agents I: 4‐aminoalkylindeno [1,2‐c] pyrazoles. J Pharm Sci 67(10):1377–1381PubMedCrossRefPubMedCentralGoogle Scholar
  22. Maurus R, Begum A, Williams LK, Fredriksen JR, Zhang R, Withers SG, Brayer GD (2008) Alternative catalytic anions differentially modulate human α-amylase activity and specificity. Biochemistry 47(11):3332–3344PubMedCrossRefPubMedCentralGoogle Scholar
  23. McCue P, Kwon Y-I, Shetty K (2005) Anti-amylase, anti-glucosidase and anti-angiotensin I-converting enzyme potential of selected foods. J Food Biochem 29(3):278–294CrossRefGoogle Scholar
  24. Meltzer-Mats E, Babai-Shani G, Pasternak L, Uritsky N, Getter T, Viskind O, Gruzman A (2013) Synthesis and mechanism of hypoglycemic activity of benzothiazole derivatives. J Med Chem 56(13):5335–5350PubMedCrossRefPubMedCentralGoogle Scholar
  25. Minegishi H, Futamura Y, Fukashiro S, Muroi M, Kawatani M, Osada H, Nakamura H (2015) Methyl 3-((6-methoxy-1,4-dihydroindeno[1,2-c]pyrazol-3-yl)amino) benzoate (GN39482) as a tubulin polymerization inhibitor identified by MorphoBase and ChemProteoBase profiling methods. J Med Chem 58(10):4230–4241PubMedCrossRefPubMedCentralGoogle Scholar
  26. Mor S, Nagoria S, Kumar A, Monga J, Lohan S (2016) Convenient synthesis, anticancer evaluation and QSAR studies of some thiazole tethered indenopyrazoles. Med Chem Res 25(6):1096–1114CrossRefGoogle Scholar
  27. Mor S, Mohil R, Nagoria S, Kumar A, Lal K, Kumar D, Singh V (2017) Regioselective synthesis, antimicrobial evaluation and QSAR studies of some 3‐aryl‐1‐heteroarylindeno [1,2‐c]pyrazol‐4 (1H)‐ones. J Heterocycl Chem 54(2):1327–1341CrossRefGoogle Scholar
  28. Mor S, Nagoria S, Sindhu S, Khatri M, Sidhu G, Singh V (2017) Synthesis of indane‐Based 1,5‐benzothiazepines derived from 3‐Phenyl‐2,3‐dihydro‐1H‐inden‐1‐one and antimicrobial studies thereof. J Heterocycl Chem 54(6):3282–3293CrossRefGoogle Scholar
  29. Mor S, Sindhu S, Nagoria S, Khatri M, Garg P, Sandhu H, Kumar A (2019) Synthesis, biological evaluation, and molecular docking studies of some N‐thiazolyl hydrazones and indenopyrazolones. J Heterocycl Chem 56(5):1622–1633Google Scholar
  30. Mor S, Sindhu S, Khatri M, Singh N, Vasudeva N, Panihar N (2019) Synthesis, type II Diabetes inhibitory activity, and antimicrobial tests of benzothiazole derivatives bridged with indenedione by methylenehydrazone. Russ J Gen Chem 89(9):1867–1873Google Scholar
  31. Okeke MI, Iroegbu CU, Eze EN, Okoli AS, Esimone CO (2001) Evaluation of extracts of the root of landolphia owerrience for antibacterial activity. J Ethnopharmacol 78:119–127PubMedCrossRefPubMedCentralGoogle Scholar
  32. Patel RV, Kumari P, Rajani DP, Chikhalia KH (2013) Synthesis of coumarin-based 1,3,4-oxadiazol-2ylthio-N-phenyl/benzothiazolyl acetamides as antimicrobial and antituberculosis agents. Med Chem Res 22(1):195–210CrossRefGoogle Scholar
  33. Patil VS, Nandre KP, Ghosh S, Rao VJ, Chopade BA, Sridhar B, Bhosale SV (2013) Synthesis, crystal structure and antidiabetic activity of substituted (E)-3-(benzo[d]thiazol-2-ylamino) phenylprop-2-en-1-one. Eur J Med Chem 59:304–309PubMedCrossRefPubMedCentralGoogle Scholar
  34. Roig-Zamboni V, Cobucci-Ponzano B, Iacono R, Ferrara MC, Germany S, Bourne Y, Sulzenbacher G (2017) Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nat Commun 8(1):1–10CrossRefGoogle Scholar
  35. Sarkar S, Dwivedi J, Chauhan R (2013) Synthesis of 1-[2(substituted phenyl)-4-oxothiazolidin-3-yl]-3-(6-fluro-7-chloro-1,3-benzothiazol-2-yl)-ureas as anthelmintic agent. J Pharm Res 7(5):439–442Google Scholar
  36. Scott KA, Njardarson JT (2018) Analysis of US FDA-approved drugs containing sulfur atoms. Top Curr Chem 376(1):1–34CrossRefGoogle Scholar
  37. Sawhney KN, Lemke TL (1983) Chemistry of β-triketones. 1. Structure of Schiff base intermediates of 2-acyl-1,3-indandiones. J Org Chem 48(23):4326–4329CrossRefGoogle Scholar
  38. Shafi S, Alam MM, Mulakayala N, Mulakayala C, Vanaja G, Kalle AM, Alam MS (2012) Synthesis of novel 2-mercaptobenzothiazole and 1,2,3-triazole based bis-heterocycles: their anti-inflammatory and anti-nociceptive activities. Eur J Med Chem 49:324–333PubMedCrossRefPubMedCentralGoogle Scholar
  39. Shareef MA, Sirisha K, Khan I, Sayeed IB, Jadav SS, Ramu G, Babu BN (2019) Design, synthesis, and antimicrobial evaluation of 1,4-dihydroindeno[1,2-c]pyrazole tethered carbohydrazide hybrids: exploring their in silico ADMET, ergosterol inhibition and ROS inducing potential. Med Chem Comm 10(5):806–813CrossRefGoogle Scholar
  40. Singh SK, Dessalew N, Bharatam PV (2006) 3D-QSAR CoMFA study on indenopyrazole derivatives as cyclin dependent kinase 4 (CDK4) and cyclin dependent kinase 2 (CDK2) inhibitors. Eur J Med Chem 41(11):1310–1319PubMedCrossRefPubMedCentralGoogle Scholar
  41. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461PubMedPubMedCentralGoogle Scholar
  42. Wagman AS, Boyce RS, Brown SP, Fang E, Goff D, Jansen JM, Nuss JM (2017) Synthesis, binding mode, and antihyperglycemic activity of potent and selective (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl] amine inhibitors of glycogen synthase kinase 3. J Med Chem 60(20):8482–8514PubMedCrossRefPubMedCentralGoogle Scholar
  43. Wright JB, Dulin WE, Markillie JH (1964) The antidiabetic activity of 3,5-dimethylpyrazoles. J Med Chem 7(1):102–105PubMedCrossRefPubMedCentralGoogle Scholar
  44. Xiao Z, Storms R, Tsang A (2006) A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal Biochem 351(1):146–148PubMedPubMedCentralCrossRefGoogle Scholar
  45. Yevich JP, New JS, Smith DW, Lobeck WG, Catt JD, Minielli JL, Temple Jr. DL (1986) Synthesis and biological evaluation of 1-(1,2-benzisothiazol-3-yl) and (1,2-benzisoxazol-3-yl) piperazine derivatives as potential antipsychotic agents. J Med Chem 29(3):359–369PubMedCrossRefPubMedCentralGoogle Scholar
  46. Yoshikawa M, Nishida N, Shimoda H, Takada M, Kawahara Y, Matsuda H (2001) Polyphenol constituents from salacia species: quantitative analysis of mangiferin with α-glucosidase and aldose reductase inhibitory activities. Yakugaku zasshi J 121(5):371–378CrossRefGoogle Scholar
  47. Zhou S, Yang S, Huang G (2017) Design, synthesis and biological activity of pyrazinamide derivatives for anti-Mycobacterium tuberculosis. J Enzym Inhib Med Chem 32(1):1183–1186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryGuru Jambheshwar University of Science and TechnologyHisarIndia

Personalised recommendations