Medicinal Chemistry Research

, Volume 28, Issue 12, pp 2109–2117 | Cite as

Synthesis of dehydro-α-lapachones, α- and β-lapachones, and screening against cancer cell lines

  • Caroline dos S. Moreira
  • Caroline D. Nicoletti
  • Daniel P. Pinheiro
  • Leonardo G. C. de Moraes
  • Debora O. Futuro
  • Vitor F. FerreiraEmail author
  • Claudia do Ó PessoaEmail author
  • David R. da RochaEmail author
Original Research


14 new naphthoquinones were prepared and tested against human cancer cell lines PC-3 (prostate), HCT-116 (colon carcinoma), SNB-19 (glioblastoma), HL-60 (leukemia) and MCF-7 (breast), and a nontumor cell line L929 (murine fibroblasts) to determine cytotoxicity with the MTT assay. 8-OH-β-lapachones (14a, 14c, 14d) presented best results, showing low IC50 values and high selectivity for HCT-116 and HL-60 tumor cells.


Naphthoquinone Cancer Dehydro-α-lapachone Lapachone Xyloidone 



Fellowships granted by CNPq, CAPES and FAPERJ are gratefully acknowledged. This work was partially supported by FAPERJ grant numbers E-26/201.448/2014, CNPq 440755/2018-2, and CNPq 303713/2014-3. The also author thanks FIOCRUZ for the HRESIMS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Canfield CJ, Pudney M, Gutteridge WE (1993) Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp Parasitol 80:373–381CrossRefGoogle Scholar
  2. Cho JY, Kim HY, Choi GJ, Jang KS, Lim HK, Lim CH, Cho KY, Kim JC (2006) Dehydro-α- lapachone isolated from Catalpa ovata stems: activity against plant pathogenic fungi. Pest Manag Sci 62:414–418CrossRefGoogle Scholar
  3. Da Rocha DR, de Souza ACG, Resende JA, Santos WC, dos Santos EA, Pessoa C, Moraes MO, Costa-Lotufo LV, Montenegro RC, Ferreira VF (2011) Synthesis of new 9-hydroxy-α- and 7-hydroxy-β-pyran naphthoquinones and cytotoxicity against cancer cell lines. Org Biomol Chem 9:4315–4322CrossRefGoogle Scholar
  4. Da Rocha DR, Mota K, Da Silva IMCB, Ferreira VF, Ferreira SB, Da Silva FC (2014) Synthesis of fused chromene-1,4-naphthoquinones via ring-closing metathesis and Knoevenagel- electrocyclization under acid catalysis and microwave irradiation. Tetrahedron 70:3266–3270CrossRefGoogle Scholar
  5. De Castro SL, Emery FS, da Silva Jr EN (2013) Synthesis of quinoidal molecules: strategies towards bioactive compounds with an emphasis on lapachones. Eur J Med Chem 69:678–700CrossRefGoogle Scholar
  6. De Lima OG, D’Albuquerque LI, Borba MAP, de Mello JF (1966) Antibiotic substances from higher plants. XXV. Isolation of xiloidone by the conversion of lapachol in the presence of pyridine. Rev Inst Antibiot 6:23–34Google Scholar
  7. De Lima OG, D’Albuquerque IL, Lima CG, Lima MHD (1972) Substâncias antimicrobianas de plantas superiores. Rev Inst Antibiot 4:3–17Google Scholar
  8. De Oliveira AB, Raslan DS, Miraglia MCM, Mesquita AAL, Zani CL, Ferreira DT, Maia JGS (1990) Estrutura química e atividade biológica de naftoquinonas de Bignoniáceas brasileiras. Química Nova 13:302–307Google Scholar
  9. De Witte NV, Stoppaniz AOM, Dubin M (2004) 2-Phenyl-β-lapachone can affect mitochondrial function by redox cycling mediated oxidation. Arch Biochem Biophys 432:129–135CrossRefGoogle Scholar
  10. Dowd P, Ham SW, Naganathan S, Hershline R (1995) The mechanism of action of vitamin K. Annu Rev Nutr 15:419–440CrossRefGoogle Scholar
  11. Epifano F, Genovese S, Fiorito S, Mathieu V, Kiss R (2014) Lapachol and its congeners as anticancer agents: a review. Phytochem Rev 13:37–49CrossRefGoogle Scholar
  12. Ferreira VF, Ferreira SB, da Silva FC (2010) Strategies for the synthesis of bioactive pyran naphthoquinones. Org Biomol Chem 8:4793–4802CrossRefGoogle Scholar
  13. Garkavtsev I, Chauhan VP, Wong HK, Mukhopadhyay A, Glicksman MA, Peterson RT, Jaina RK (2011) Dehydro-α-lapachone, a plant product with antivascular activity. Proc Natl Acad Sci USA 108:11596–11601CrossRefGoogle Scholar
  14. Gupta RB, Khanna RN (1979) Bromination with N-bromosuccinimide: Part I. Bromination of α- lapachone and synthesis of dehydro-α-lapachone, 4-hydroxy-α-lapachone and 4-oxo-α- lapachone. Indian J Chem B 18B:16–18Google Scholar
  15. Hashemi-Fesharki R (1991) Chemotherapeutic value of parvaquone and buparvaquone against Theileria annulata infection of cattle. Res Vet Sci 50:204–207CrossRefGoogle Scholar
  16. Kumagai Y, Shinkai Y, Miura T, Cho AK (2012) The chemical biology of naphthoquinones and its environmental implications. Annu Rev Pharm Toxicol 52:221–247CrossRefGoogle Scholar
  17. Lee YR, Choi JH, Trinh DTL, Kim NW (2005) A concise route for the synthesis of pyranonaphthoquinone derivatives. Synthesis 18:3026–3034CrossRefGoogle Scholar
  18. Linardi MFC, Oliveira MM, Sampaio MRP (1975) Lapachol derivative active against mouse lymphocytic leukemia P-388. J Med Chem 18(1975):1159–1161CrossRefGoogle Scholar
  19. Machado TB, Pinto AV, Pinto MCFR, Leal ICR, Silva MG, Amaral ACF, Kuster RM, Netto dos Santos KR (2003) In vitro activity of Brazilian medicinal plants, naturally occurring naphthoquinones and their analogues, against methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 21:279–284CrossRefGoogle Scholar
  20. MacLeod JW, Thomson RH (1960) Studies in the juglone series. IV. The addition of aniline and toluene-p-thiol to 5-substituted 1,4-naphthoquinones. J Org Chem 25:36–42CrossRefGoogle Scholar
  21. Maji A, Samanta A, Mahapatra S, Banerji P, Banerjee D (2014) In-vivo immunomodulatory activity of standardized Stereospermum suaveolens (Roxb.) DC. root extract. Orient Pharm Exp Med 14:47–54CrossRefGoogle Scholar
  22. Matsumoto T, Ichihara A, Yanagiya M, Yuzawa T, Sannai A, Oikawa H, Sakamura S, Eugster CH (1985) Two new syntheses of the pyranojuglone pigment α-caryopterone. Hel Chim Acta 68:2324–2331CrossRefGoogle Scholar
  23. Morton RA (1965) Biochemistry of quinones. Academic Press, London and New York, NYGoogle Scholar
  24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  25. Müller K, Sellmer A, Wiegrebe W (1999) Potential antipsoriatic agents: lapacho compounds as potent inhibitors of HaCaT cell growth. J Nat Prod 62:1134–1136CrossRefGoogle Scholar
  26. Olliaro P, Wirth PD (1997) New targets for antimalarial drug discovery. J Pharm Pharm 49:29–33CrossRefGoogle Scholar
  27. Pinto AV, Ferreira VF, Pinto MC (1985) Oxidation with DMF/HIO4: a convenient preparation of juglone. Synth Commun 15:1177–1180CrossRefGoogle Scholar
  28. Shaabani A, Ghadari R, Ghasemi S, Pedarpour M, Rezayan AH, Sarvary A, Ng SW (2009) Novel one-pot three- and pseudo-five-component reactions: synthesis of functionalized benzo[g]- and dihydropyrano[2,3-g]chromene derivatives. J Comb Chem 11:956–959CrossRefGoogle Scholar
  29. Silva EO, De Carvalho TC, Parshikov IA, Dos Santos RA, Emery FS, Furtado NAJC (2014) Cytotoxicity of lapachol metabolites produced by probiotics. Lett Appl Microbiol 59:108–114CrossRefGoogle Scholar
  30. Suffness M, Pezzuto JM (1990) Assays related to cancer drug discovery. In: Hostettmann K (Ed.) Methods in plant biochemistry: assays for bioactivity. Academic Press, London, p 71–133. Vol. 6Google Scholar
  31. Watson RB, Golonka AN, Schindler CS (2016) Iron(III) chloride catalyzed formation of 3,4- dihydro-2H-pyrans from α-alkylated 1,3-dicarbonyls. Selective synthesis of α- and β-lapachone. Org Lett 18:1310–1313CrossRefGoogle Scholar
  32. Weaver RJ, Dickins M, Burke MD (1993) Cytochrome P4502C9 is responsible for hydroxylation of the naphthoquinone antimalarial drug 58C80 in human liver. Biochem Pharm 46:1183–1197CrossRefGoogle Scholar
  33. Wheeler AS, Scott JW (1919) The halogenation of juglone: a new type of naphthalene dyes. J Am Chem Soc 41:833–841CrossRefGoogle Scholar
  34. Wurm G, Gurka H-J, Geres U (1986) Reaktion von 2- und 3-Chlor/Bromjuglonderivaten mit methanolischer lauge (Teil 1: Monomere Produkte). Arch Pharm 319:1106–1113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Química, Campus do ValonguinhoUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Faculdade de FarmáciaUniversidade Federal FluminenseNiteróiBrazil
  3. 3.Centro de Ciências da Saúde, Núcleo de Pesquisa e Desenvolvimento de MedicamentosUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations