Synthesis and biological evaluation of novel chromonyl enaminones as α-glucosidase inhibitors

  • Aarón Mendieta-MoctezumaEmail author
  • Catalina Rugerio-Escalona
  • Nemesio Villa-Ruano
  • Rsuini U. Gutierrez
  • Fabiola E. Jiménez-Montejo
  • M. Jonathan Fragoso-Vázquez
  • José Correa-Basurto
  • María C. Cruz-López
  • Francisco Delgado
  • Joaquín TamarizEmail author
Original research


Series of novel chromonyl enaminones 1a–e and 2ae and 3-alkylated chromones 3ae were synthesized and evaluated in vitro as α-glucosidase inhibitors as well as antioxidant and antifungal agents. Antifungal activity was tested on strains of Candida albicans. Compounds 2a and 2de showed good inhibition of the α-glucosidase enzyme (IC50 = 5.5, 0.9, and 1.5 mM, respectively), their effect being better than that of 1ae, 3ae, and acarbose (the standard, IC50 = 7.73 ± 0.9 mM). The structure–activity relationship suggests that the phenyl group at the C-3 position of the chromone ring system and the 4-chlorophenyl group at the enaminone moiety (derivatives 2) increased the inhibition of α-glucosidase. Compounds 2ae exhibited a slight antioxidant effect, and compounds 3ae a moderate antifungal activity against C. albicans (IC50 70.5–83.1 µg/mL). Docking studies revealed that compounds 2 interact with the α-glucosidase residues of the binding pocket. Therefore, these chromone derivatives may be considered as potential α-glucosidase inhibitors, as well as antifungal agents against some Candida strains of yeast.


Chromonyl enaminones Chromones α-glucosidase inhibitors Candida albicans 



The authors thank Carlos Espinoza-Hicks for help in spectrometric measurements and Bruce A. Larsen for proofreading. J.T. acknowledges financial support from the Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional (SIP-IPN) (grants 20090326, 20100236, 20110172, 20120830, 20130686, 20140858, 20180198, and 20195228) and CONACYT (grants 83446 and 178319). For financial support, F.D. is grateful to SIP-IPN (grants 20170925, 20181332, and 20195287) and J.C.-B. to CONACyT (CBB-254600 and APN-782). A.M.-M. and C.R.-E. thank CONACYT for the graduate scholarships awarded (178319 and 264517) and SIP-IPN (BEIFI) for a complementary scholarship. This work was financially supported by a project from SIP-IPN (20170430, 20181433, 20195786). F.E.J.-M. (20160247), M.C.C.-L. (20160206), F.D., and J.T. are fellows of the Estímulos al Desempeño de los Investigadores (EDI-IPN), and M.C.C.-L., F.D., and J.T. are fellows of the Comisión de Operación y Fomento de Actividades Académicas (COFAA)-IPN.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2019_2320_MOESM1_ESM.doc (12.5 mb)
Supplementary Information


  1. ACD/ChemSketch (Freeware) version 14. 01 (2012). Advanced Chemistry Development, Inc., Toronto, ON, CanadaGoogle Scholar
  2. Belov P, Campanella VL, Smith AW, Priefer R (2011) Microwave-assisted methylation of phenols with DMA-DMF. Tetrahedron Lett 52:2776–2779CrossRefGoogle Scholar
  3. Berkow EL, Lockhart SR (2017) Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist 10:237–245CrossRefGoogle Scholar
  4. Boonsombat J, Prachyawarakorn V, Pansanit A, Mahidol C, Ruchirawat S, Thongnest S (2017) Superbanone, a new 2-aryl-3-benzofuranone and other bioactive constituents from the tube roots of Butea superba. Chem Biodivers 14:e1700044CrossRefGoogle Scholar
  5. Brunel A-S, Guery B (2017) Multidrug resistant (or antimicrobial-resistant) pathogens—alternatives to new antibiotics. Swiss Med Wkly 147:14553–14567Google Scholar
  6. Canno RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC (2007) Candida albicans drug resistance—another way to cope with stress. Microbiology 153:3211–3217CrossRefGoogle Scholar
  7. Cevallos-Casals BA, Cisneros-Zevallos L (2003) Stoichiometric and kinetic studies of phenolic antioxidants from Anden purple corn and red-fleshed sweetpotato. J Agric Food Chem 51:3313–3319CrossRefGoogle Scholar
  8. Chin MR, Zlotkowski K, Han M, Patel S, Eliasen AM, Axelrod A, Siegel D (2015) Expedited access to vinaxanthone and chemically edited derivatives possessing neuronal regenerative effects through ynone coupling reactions. ACS Chem Neurosci 5:542–550CrossRefGoogle Scholar
  9. Chohan ZH, Rauf A, Naseer MM, Somra MA, Supuran CT (2006) Antibacterial, antifungal and cytotoxic properties of some sulfonamide-derived chromones. J Enzyme Inhib Med Chem 21:173–177CrossRefGoogle Scholar
  10. Correa C, Cruz MC, Jiménez F, Zepeda LG, Tamariz J (2008) A new synthetic route of 2-aryl- and 2-benzyl-benzofurans and their application in the total synthesis of a metabolite isolated from Dorstenia gigas. Aust J Chem 61:991–999CrossRefGoogle Scholar
  11. Csepanyi E, Szabados-Furjesi P, Kiss-Szikszai A, Frensemeier LM, Karst U, Lekli I, Haines DD, Tosaki A, Bak I (2017) Antioxidant properties and oxidative transformation of different chromone derivatives. Molecules 22:588–599CrossRefGoogle Scholar
  12. DeLano WL (2002) PyMOL: an open-source molecular graphics tool. CCP4 Newsletter on Protein. Crystallography 40:82–92Google Scholar
  13. Dennington R, Keith T, Millan J (2012) GaussView, Version 5. Semichem, Inc., Shawnee Mission, KSGoogle Scholar
  14. Dofe VS, Sarkate AP, Lokwani DK, Shinde DB, Kathwate SH, Gill CH (2017a) Novel o-alkylated chromones as antimicrobial agents: ultrasound mediated synthesis, molecular docking and ADME prediction. J Heterocycl Chem 54:2678–2685CrossRefGoogle Scholar
  15. Dofe VS, Sarkate AP, Lokwani DK, Kathwate SH, Gill CH (2017b) Synthesis, antimicrobial evaluation, and molecular docking studies of novel chromone based 1,2,3-triazoles. Res Chem Intermed 43:15–28CrossRefGoogle Scholar
  16. Farrugia LJ (1997) ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). J Appl Cryst 30:565CrossRefGoogle Scholar
  17. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Cryst 32:837–838CrossRefGoogle Scholar
  18. Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Cryst 45:849–854CrossRefGoogle Scholar
  19. Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F (2014) Chromone: a valid scaffold in medicinal chemistry. Chem Rev 114:4960–4992CrossRefGoogle Scholar
  20. Goto H, Terao Y, Akai S (2009) Synthesis of various kinds of isoflavones, isoflavones, and biphenyl-ketones and their 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activities. Chem Pharm Bull 57:346–360CrossRefGoogle Scholar
  21. Huls R (1958) Synthesis of substituted chromones. Synthesis of 6,7-dimethoxy-2,2-dimethyl-3-chromene (ageratochromone) Bull Soc Chim Belg 67:22–32CrossRefGoogle Scholar
  22. Jerezano A, Jiménez F, Cruz MC, Montiel LE, Delgado F, Tamariz J (2011) New approach for the construction of the coumarin frame and application in the total synthesis of natural products. Helv Chim Acta 94:185–198CrossRefGoogle Scholar
  23. Jha HC, Zilliken F, Offermann W, Breitmaier E (1981) Carbon-13 NMR shifts and C–H coupling constants of deoxybenzoins and related acetophenones. Can J Chem 59:2266–2281CrossRefGoogle Scholar
  24. Jiménez F, Cruz MC, Zúñiga C, Martínez MA, Chamorro G, Díaz F, Tamariz J (2010) Aryloxyacetic ester structurally related to α-asarone as potential antifungal agents. Med Chem Res 19:33–57CrossRefGoogle Scholar
  25. Jhon CH, Riyaphan J, Lin SH, Chia YC, Weng CF (2015) Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Biofactors 41:242–251CrossRefGoogle Scholar
  26. Jose ES, Philip JE, Shanty AA, Kurup MRP, Mohanan PV (2018) Novel class of mononuclear 2-methoxy-4-chromanones ligated Cu (II), Zn (II), Ni (II) complexes: synthesis, characterization and biological studies. Inorg Chim Acta 478:155–165CrossRefGoogle Scholar
  27. Keri RS, Budagumpi S, Krishna R, Balakrishna RG (2014) Chromones as a privileged scaffold in drug discovery: a review. Eur J Med Chem 78:340–374CrossRefGoogle Scholar
  28. Kerru N, Singh-Pillay A, Awolade P, Singh P (2018) Current antidiabetic agents and their molecular targets: a review. Eur J Med Chem 152:436–488CrossRefGoogle Scholar
  29. Kim MK, Yoon H, Barnard DL, Chong Y (2013) Design, synthesis and antiviral activity of 2-(3-amino-4-piperazinylphenyl)chromone derivatives. Chem Pharm Bull 61:486–488CrossRefGoogle Scholar
  30. Labarrios E, Jerezano A, Jiménez F, Cruz MC, Delgado F, Zepeda JG, Tamariz J (2014) Efficient synthetic approach to substituted benzo[b]furans and benzo[b]thiophenenes by iodine-promoted cyclization of enaminones. J Heterocycl Chem 51:954–971CrossRefGoogle Scholar
  31. Lu M, Li T, Wan J, Li X, Yuan L, Sun S (2017) Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int J Antimicrob Agents 49:125–136CrossRefGoogle Scholar
  32. Mendieta A, Jiménez F, Garduño-Siciliano L, Mojica-Villegas A, Rosales-Acosta B, Villa-Tanaca L, Chamorro-Cevallos G, Medina-Franco JL, Meurice N, Gutiérrez RU, Montiel LE, Cruz MC, Tamariz J (2014) Synthesis and highly potent hypolipidemic activity of alpha-asarone- and fibrate-based 2-acyl and 2-alkyl phenols as HMG-CoA reductase inhibitors. Bioorg Med Chem 22:5871–5882CrossRefGoogle Scholar
  33. Moore ML, Day AA, Suter CM (1934) The preparation and germicidal properties of some derivatives of 4-n-butylresorcinol. J Am Chem Soc 56:2456–2459CrossRefGoogle Scholar
  34. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDock Tools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791CrossRefGoogle Scholar
  35. Musso L, Dallavalle S, Merlini L, Farina G (2010) Synthesis and antifungal activity of 2-hydroxy-4,4-methylenedioxyaryl ketones as analogues of kakuol. Chem Biodivers 7:887–897CrossRefGoogle Scholar
  36. Nohara A, Umetani T, Sanno Y (1974) Studies on antianaphylactic agents. I. Facile synthesis of 4-oxo-4H-1-benzopyran-3-carbaldehydes by Vilsmeier reagents. Tetrahedron 30:3553–3561CrossRefGoogle Scholar
  37. Philip JE, Shahid M, Prathapachandra Kurup MR, Velayudhan MP (2017) Metal based biologically active compounds: design, synthesis, DNA binding and antidiabetic activity of 6-methyl-3-formyl chromone derived. J Photochem Photobiol B 175:178–191CrossRefGoogle Scholar
  38. Rao YJ, Krupadanam GLD (1994) Facile synthesis of linear and angular 2-methylfurobenzopyranone. Bull Chem Soc Jpn 67:1972–1975CrossRefGoogle Scholar
  39. Reis J, Gaspar A, Milhazes N, Borges F (2017) Chromones as a privileged scaffold in drug discovery: recent advances. J Med Chem 60:7941–7957CrossRefGoogle Scholar
  40. Salehi P, Asghari B, Esmaeili MA, Dehghan H, Ghazi I (2013) α-Glucosidase and α-amylase inhibitory effect and antioxidant of ten plant extracts traditionally used in Iran for diabetes. J Med Plants Res 7:257–266Google Scholar
  41. Sarker SD, Nahar L, kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324CrossRefGoogle Scholar
  42. Seleem D, Pardi V, Murata RM (2017) Review of flavonoids: a diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch Oral Biol 76:76–83CrossRefGoogle Scholar
  43. Sheldrick GM (2008) A short history of SHELX. Acta Cryst Sect A 64:112–122CrossRefGoogle Scholar
  44. Sheldrick GM (2015) SHELXT—integrated space-group and crystal-structure determination. Acta Cryst Sect A 71:3–8CrossRefGoogle Scholar
  45. Soengas RG, Silva VLM, Ide D, Kato A, Cardoso SM, Almeida FAP, Silva AMS (2016) Synthesis of 3-(2-nitrovinyl)-4H-chromones: useful scaffolds for the construction of biological relevant 3-(pyrazol-5-yl)chromones. Tetrahedron 72:3198–3203CrossRefGoogle Scholar
  46. Sun YL, Bao J, Liu KS, Zhang XY, He F, Wang YF, Nong XH, Qi SH (2013) Cytotoxic dihydrothiophene-condensed chromones from the marine-derived fungus Penicillium oxacilum. Planta Med 79:1474–1479CrossRefGoogle Scholar
  47. Takao K, Ishikawa R, Sugita Y (2014) Synthesis and biological evaluation of 3-styrylchromones derivatives as free radical scavengers and α-glucosidase inhibitors. Chem Pharm Bull 62:810–815CrossRefGoogle Scholar
  48. Upadhyay J, Polyzos SA, Perakakis N, Thakkar B, Paschou SA, Katsiki N, Underwood P, Park KH, Seufert J, Kang ES, Sternthal E, Karagiannis A, Mantzoros CS (2018) Pharmacotherapy of type 2 diabetes: an update. Metabolism 78:13–42CrossRefGoogle Scholar
  49. Wang G, Chen M, Wang J, Peng Y, Li L, Xie Z, Deng B, Chen S, Li W (2017) Synthesis, biological evaluation and molecular docking studies of chromone hydrazine derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett 27:2957–2961CrossRefGoogle Scholar
  50. Wang G, Chen M, Qiu J, Xie Z, Cao A (2018) Synthesis, in vitro α-glucosidase inhibitory activity and docking studies of novel chromone-isatin derivatives. Bioorg Med Chem Lett 28:113–116CrossRefGoogle Scholar
  51. Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD (2017) Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol 7:2173–2184CrossRefGoogle Scholar
  52. Xiu C, Hua Z, Xiao BS, Tang WJ, Zhou HP, Liu XH (2017) Novel benzopyran derivatives and their therapeutic applications: a patent review (2009–2016). Expert Opin Ther Pat 27:1031–1045CrossRefGoogle Scholar
  53. Zhen J, Dai Y, Villani T, Giurleo D, Simon JE, Wu Q (2017) Synthesis of novel flavonoid alkaloids as α-glucosidase inhibitors. Bioorg Med Chem 25:5355–5364CrossRefGoogle Scholar
  54. Zou H, Jiang H, Zhou JY, Zhu Y, Cao L, Xia P, Zhang Q (2010) Synthesis of 3-(4-hydroxyphenyl)-4-methyl-6-methoxy-7-hydroxycoumarin and its analogous as angiogenesis inhibitors. J Chin Pharm Sci 19:136–140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aarón Mendieta-Moctezuma
    • 1
    • 2
    Email author
  • Catalina Rugerio-Escalona
    • 1
  • Nemesio Villa-Ruano
    • 3
  • Rsuini U. Gutierrez
    • 2
  • Fabiola E. Jiménez-Montejo
    • 1
  • M. Jonathan Fragoso-Vázquez
    • 4
  • José Correa-Basurto
    • 4
  • María C. Cruz-López
    • 1
  • Francisco Delgado
    • 2
  • Joaquín Tamariz
    • 2
    Email author
  1. 1.Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico NacionalCarretera Estatal Santa Inés Tecuexcomac-TepetitlaTlaxcalaMexico
  2. 2.Departamento de Química Orgánica, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
  3. 3.Universidad de la Sierra SurCiudad UniversitariaOaxacaMexico
  4. 4.Laboratorio de Desarrollo de Fármacos y Productos Biotecnológicos, Escuela Superior de MedicinaInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations