Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores

  • Ahmed M. Farghaly
  • Omaima M. AboulWafaEmail author
  • Yaseen A. M. Elshaier
  • Waleed A. Badawi
  • Haridy H. Haridy
  • Heba A. E. Mubarak
Original Research


A new series of achiral pyrimidine derivatives based on nifedipine-like structure was designed and synthesized. These pyrimidyl derivatives contained hydrazine, hydrazones, acetohydrazide, differently substituted benzylidene functionalities, benzosulfohydrazine, various heterocycles such as pyrazole, pyrazolidinedione, thiazoline, and thiazolidinone rings, and fused ring systems such as triazolopyrimidine and pyrimidotriazine rings. Compounds 5a, 5b, 11b, 8b, 9b–d, and 15b showed a decrease in mean arterial rabbit blood pressure (MABP) ranging from 51.4 to 78.2 mmHg in rabbits in comparison with nifedipine-treated rabbits. Among these derivatives, compounds 5a, 5b, 9b, and 9c were found to exhibit calcium channel blockade activity on preparations of rabbit aortae. They exhibited relaxation in the range of 89.2% to 74.4% in comparison to nifedipine (57.6%) as well as a decrease in heart rate. Histopathological effect of compounds 5a,b on the expression of endothelial nitric oxide synthase (eNOS) was also examined on rat aorta. An intense expression of eNOS immune staining in aortic endothelium was seen for compound 5b indicating that it lowered blood pressure via activation of eNOS expression in aorta.


Nifedipine Pyrimidines ENOS Antihypertensive Histopathology SAR 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed involving animals were in accordance with the ethical standards. The experimental protocol was approved by Animal Care and Use Committee, Faculty of Pharmacy, Alexandria University (ACUC Project Number 16/1).

Supplementary material

44_2019_2289_MOESM1_ESM.docx (7.3 mb)
Supplementary Information


  1. Abdel-Aziz SA, Hussein MA, Abdel-Raheem IT (2011) Design, synthesis and antidiabeti activity of some new 4-amino (or 6-oxo)-2- methyl/benzylthio (or substituted amino)pyrimidine derivatives‏. Bull Pharm Sci, Assiut Univ 34:149–158Google Scholar
  2. Aggarwal R, Kumar V, Kumar R, Singh SP (2011) Approaches towards the synthesis of 5-aminopyrazoles. Beilstein J Org Chem 7:179–107CrossRefGoogle Scholar
  3. Alam O, Khan SA, Siddiqui N, Ahsan W, Verma SP, Giliani SJ (2010) Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides, synthesis and pharmacological evaluation. Eur J Med Chem 45:5113–5119CrossRefGoogle Scholar
  4. Atwal KS, O'Reilly BC, Gougoutas JZ, Malley MF (1987) Synthesis of substituted 1,2,3,4-tetrahydro-6-methyl-2-thioxo-5-pyrimidinecarboxylic acid esters. Heterocycles 26:1189–1192CrossRefGoogle Scholar
  5. Bakr FA, Kamal MD (2012) Synthesis and applications of bipyrazole systems Arch Org Chem 1:491–545Google Scholar
  6. Bikker JA, Weaver DF (1993) Theoretical studies applicable to the design of novel anticonvulsants: Part 2. A comparison of AM1, MNDO, and PM3 semi-empirical molecular orbital conformational analyses of dihydropyridine calcium channel blockers. J Mol Struct: THEOCHEM 281:173–184CrossRefGoogle Scholar
  7. Bonde CG, Gaikwad NJ (2004) Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg Med Chem 12:2151–2161CrossRefGoogle Scholar
  8. Bossert F, Vater W (1989) 1,4‐Dihydropyridines—a basis for developing new drugs. Med Res Rev 9:291–324CrossRefGoogle Scholar
  9. Burn JH (1952) Pharmacology, vol 25. Blackwell Scientific Publications Ltd. Oxford, p 30–31Google Scholar
  10. Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E (2003) International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55:579–581CrossRefGoogle Scholar
  11. De Fatima A, Braga TC, Neto LDS, Terra BS, Oliveira BGF, Da Silva DL, Modolo LV (2015) A mini-review on Biginelli adducts with notable pharmacological properties. J Adv Res 6:363–373CrossRefGoogle Scholar
  12. De la Sierra A, Ruilope LM (2007) Are calcium channel blockers first-line drugs for the treatment of hypertension and cardiovascular disease? Curr Hypertens Rev 3:9–13CrossRefGoogle Scholar
  13. Ding R, He Y, Jingli X, Liu H, Wang X, Feng M, Qi C, Zhang J, Peng C, Atwal S, Oreilly BC, Gougoutas JZ, Malley MF (1987) Synthesis of substituted 1,2,3,4‐tetrahydro‐6‐methyl‐2‐thioxo‐5‐pyrimidinecarboxylic acid esters. Heterocycles 26:1189–1192CrossRefGoogle Scholar
  14. Ellershaw DC, Gurney AM (2001) Mechanisms of hydralazine induced vasodilation in rabbit aorta and pulmonary artery. Br J Pharmacol 134:621–631CrossRefGoogle Scholar
  15. Enseleit F, Luscher TF, Ruschitzka F (2010) Therapeutic advances in cardiovascular diseases. Ther Adv Cardiovac Dis 4:231–240CrossRefGoogle Scholar
  16. European Society of Hypertension–European Society of Cardiology (2013) Guidelines for the management of arterial hypertension. Eur Heart J 34:2159–2219Google Scholar
  17. Gaudio AC, Korolkovas A, Takahata Y (1994) Conformational analysis of the 1,4-dihydropyridines linking the structural aspects to the biological binding event a study of the receptor-site conformation. J Mol Struct: THEOCHEM 303:255–263CrossRefGoogle Scholar
  18. Girgis AS, Kalmouch A, Ellithey M (2006) Synthesis of novel vasodilatory active nicotinate esters with amino acid function. Bioorg Med Chem 14:8488–8490CrossRefGoogle Scholar
  19. Girgis AS, Mishriky N, Farag AM, El-Eraky WI, Farag H (2008) Synthesis of new 3-pyridinecarboxylates of potential vasodilation properties. Eur J Med Chem 43:1818–1825CrossRefGoogle Scholar
  20. Grover GJ, Dzwonczyk S, McMullen DM, Normadinan CS, Sleph PG, Morel SJ (1995) Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,946. J Cardiovasc Pharmacol 26:289–294CrossRefGoogle Scholar
  21. Guarneri L, Sironi G, Angelico P, Ibba M, Greto L, Colombo D, Leonardi A, Testa R (1997) In vitro and in vivo vascular selectivity of lercanidipine and its enantiomers. J Cardiovasc Pharmacol 29:S25–S32CrossRefGoogle Scholar
  22. Gurney AM, Allam M (1995) Inhibition of calcium release from the sarcoplasmic reticulum of rabbit aorta by hydralazine. J Pharmacol 114:238–244Google Scholar
  23. Hadizadeh F, Fatehi M, Fatehi-Hassanabad Z, Zandieh M (2008) Effects of 4-(2-Alkylthio-1-benzyl-5-imidazolyl)dihydropyridines on the isolated rat colon and right atrium contractility. Iran J Basic Med Sci 11:159–165Google Scholar
  24. Higashio T, Kuroda K (1988) Effects of cadralazine on contractions induced by Ca2+ and norepinephrine in isolated rabbit aortic strips. Arzneim-Forsch 38:346–349Google Scholar
  25. Horovitz ZP (1990) European Patent Application EP400665A2Google Scholar
  26. Hussain SM, El-Barbary AA, Mansour SA (1985) A one‐step synthesis of 2‐methylthio‐6‐oxopyrimidine derivatives: preparation of fused pyrimidinones. J Heterocycl Chem 22:169–171CrossRefGoogle Scholar
  27. Jain KS, Bariwal JB, Kathiravan MK, Phoujdar MS, Sahne RS, Chauhan BS, Shah AK, Yadav MR (2008) Recent advances in selective α1-adrenoreceptor antagonists as antihypertensive agents. Bioorg Med Chem 16:4759–4800CrossRefGoogle Scholar
  28. Jeanneau NE, Benoit-Guyod M, Namil A, Leclercq G (1992) New thiazolo[3,2-a] pyrimidine derivatives, synthesis and structure–activity relationships. Eur J Med Chem 27:115–120CrossRefGoogle Scholar
  29. Jones RG (1952) Reactions of orthoesters with active methylene compounds. J Am Chem Soc 74:4889–4891CrossRefGoogle Scholar
  30. Kappe CO, Fabian WM, Semones MA (1997) Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators: a comparison of ab initio, semi-empirical and X-ray crystallographic studies. Tetrahedron 53:2803–2816CrossRefGoogle Scholar
  31. Kappe CO (1998) 4-Aryldihydropyrimidines via the Biginelli condensation: aza-analogs of nifedipine-type calcium channel modulators. Molecules 3:1–9CrossRefGoogle Scholar
  32. Kaur R, Kaur B (2013) Design, synthesis and study of fused 1,4-dihydropyrimidines of biological interest—a review. J Appl Chem 2:1102–1115Google Scholar
  33. Khayyal M, Gross F, Kreye VA (1981) Studies on the direct vasodilator effect of hydralazine in the isolated rabbit renal artery. J Pharmacol Exp Ther 216:390–394Google Scholar
  34. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Systematic analysis of population health data. Lancet 367:1747–1757CrossRefGoogle Scholar
  35. Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium: the vascular endothelium I. In: Handbook of Experimental Pharmacology. Springer Berlin Heidelberg, p 213–254Google Scholar
  36. Negwer M (1994) Organic-Chemical Drugs and their Synonyms. Akademie Verlag, Berlin, p 2558Google Scholar
  37. Orallo F, Gilongo J, Bardon B, Calleja JM (1991) Comparison of the effects of hydralazine and nifedipine on contractions and Ca influx in rat aorta. J Pharm Pharmacol 43:356–359CrossRefGoogle Scholar
  38. Ozawa Y, Hayashi K, Kobori H (2006) New generation of calcium channel blockers in hypertensive treatment. Curr Hypertens Rev 2:103–111CrossRefGoogle Scholar
  39. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424CrossRefGoogle Scholar
  40. Palmer RB, Andersen NH (1996) Conformational dynamics of 4-aryl-1,4-dihydropyridine calcium channel antagonists. 1. Quantitation of C4–C1′ bond rotational barriers. Tetrahedron 52:9665–9675CrossRefGoogle Scholar
  41. Rovnyak GC, Kimball SD, Beyer B, Cucinotta G, DiMarco JD, Gougoutas J, Hedberg A, Malley M, McCarthy JP, Zhang R, Morel SJ (1995) Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators. J Med Chem 38:119–129CrossRefGoogle Scholar
  42. Spáčilová L, Džubák P, Hajdúch M, Křupková S, Hradil P, Hlaváč J (2007) Synthesis and cytotoxic activity of various 5-[alkoxy-(4-nitrophenyl)methyl]uracils in their racemic form. Bioorg Med Chem Lett 17:6647–6650CrossRefGoogle Scholar
  43. Taqvi SI, Aftab MT, Ghayur MN, Gilani AH, Saify ZS (2006) Synthesis and pharmacological screening of 1-(2',4'-dimethoxyphenacyl)-4-hydroxy-4-phenyl-piperidinium bromide. Int J Pharmacol 2:146–155CrossRefGoogle Scholar
  44. Teleb M, Zhang F-X, Farghaly AM, AboulWafa OM, Fronczek FR, Zamponi GW, Fahmy H (2017a) Synthesis of new N 3-substituted dihydropyrimidine derivatives as L-/T-type calcium channel blockers. Eur J Med Chem 134:52–61CrossRefGoogle Scholar
  45. Teleb M, Zhang F-X, Huang J, Gadotti VM, Farghaly AM, AboulWafa OM, Fronczek FR, Zamponi GW, Fahmy H (2017b) Synthesis and biological evaluation of novel N 3-substituted dihydropyrimidine derivatives as T-type calcium channel blockers and their efficacy as analgesics in mouse models of inflammatory pain. Bioorg Med Chem 25:1926–1938CrossRefGoogle Scholar
  46. Vanhoutte PM (2009) How we learned to say NO. Arterioscler Thromb Vasc Biol 29:1156–1160CrossRefGoogle Scholar
  47. Vanhoutte PM, Shimokawa H, Tang EH, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol 196:193–222CrossRefGoogle Scholar
  48. Vasudevan A, Penning TD, Chen H, Liang B, Wang S, Zhao ZQ, Chai D, Yang L, Gao YX (2012) Abbott Laboratories Trading (Shanghai) Company, Ltd. WO 2012/97683Google Scholar
  49. Vasudevan A, Penning TD, Chen H, Liang B, Wang S, Zhao ZQ, Chai D, Yang L, Gao YX, Pliushchev M (2014) Abbvie Inc. US 2014/171429Google Scholar
  50. Vater W, Kroneberg G, Foffmeiser F, Kaller H, Meng K, Oberdorf A, Puls W, Schiossmann K, Stoepel K (1972) Arzneim-Forsch 22:1–14Google Scholar
  51. Vogel HG (2008) Drug Discovery and Evaluation: Pharmacological Assays. Springer-Verlag, Berlin, Heidelberg, New York, NY, p 280–289CrossRefGoogle Scholar
  52. World Stroke Organization (2011) Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation 27:131 (2015 e29-322, Global Atlas on Cardiovascular Disease Prevention and Control; Policies, Strategies and Interventions, World Health Organization: World Heart Federation)Google Scholar
  53. Yang LL, Li GB, Yan HX, Sun QZ, Rong SZ, Feng WS, Zou J, Yang SY (2012) Discovery of N 6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors using common-feature pharmacophore model based virtual screening and hit-to-lead optimization. Eur J Med Chem 56:30–38CrossRefGoogle Scholar
  54. Yousef WM, Omar AH, Morsy MD, El-Wahed MMA, Ghanayem NM (2005) The mechanism of action of calcium channel blockers in the treatment of diabetic nephropathy. Int J Diabetes Metab 13:76–82Google Scholar
  55. Yu S-M, Chen CC, Huang Y-L, Tsai CW, Lin C-H, Teng C-M (1994) Cinnamophilin, a novel thromboxane A2 receptor antagonist, isolated from Cinnamomum philippinense. Eur J Pharmacol 256:85–91CrossRefGoogle Scholar
  56. Zhao Y, Vanhoutte PM, Leung SW (2013) Endothelial nitric oxide synthase-independent release of nitric oxide in the aorta of the spontaneously hypertensive rat. J Pharmacol Exp Ther 344:15–22CrossRefGoogle Scholar
  57. Zhao Y, Vanhoutte PM, Susan WS (2015) Vascular nitric oxide, beyond eNOS. J Pharmacol Sci 129:83–94CrossRefGoogle Scholar
  58. Zorkun İS, Saraç S, Çelebi S, Erol K (2006) Synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-thione derivatives as potential calcium channel blockers. Bioorg Med Chem 14:8582–8589CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ahmed M. Farghaly
    • 1
  • Omaima M. AboulWafa
    • 1
    Email author
  • Yaseen A. M. Elshaier
    • 2
  • Waleed A. Badawi
    • 3
  • Haridy H. Haridy
    • 4
  • Heba A. E. Mubarak
    • 5
  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Organic and Medicinal Chemistry, Faculty of PharmacyUniversity of Sadat CityMonofiaEgypt
  3. 3.Department of Pharmaceutical Chemistry, Faculty of PharmacyDamanhour UniversityDamanhourEgypt
  4. 4.Department of Pharmacology, Faculty of MedicineAl-Azhar University (Assiut Branch)AssiutEgypt
  5. 5.Department of Histology and Cell Biology, Faculty of MedicineAssiut UniversityAssiutEgypt

Personalised recommendations