Medicinal Chemistry Research

, Volume 28, Issue 2, pp 116–124 | Cite as

Oxymatrine improves L-arginine-induced acute pancreatitis related intestinal injury via regulating AKT/NFkB and claudins signaling

  • Hui Zang
  • Zhiqiang Zhang
  • Qingfeng LiuEmail author
  • Huimin Xiao
  • Tian Sun
  • Enling Guo
  • Lankun Zhang
  • Bensong Gong
Original Research


Oxymatrine (OMT) plays a significant role in chemical agents induced intestinal injury. However, its functional role in L-arginine (Arg) induced acute pancreatitis (AP) following intestinal injury and the corresponding molecular mechanism are unclear to our knowledge. We investigate OMT function in Arg induced AP following intestinal injury in vivo and vitro. OMT (4 mg/ml) decreased Arg (from 100 to 600 µM) induced IEC-6 cells growth in dose-dependent manner and inhibited Arg induced the increase of pAKT, bcl2, and the decrease of Bax. Meanwhile, OMT inhibited Arg (600 µM) induced the increase of pro-inflammatory cytokines TNF-a, IL-6, IL-1β, and NFkBp65 and the decrease of anti-inflammatory cytokine IL-10 expression. Moreover, the change of tight junction proteins claudins 1–4 expression induced by Arg was also reversed by OMT. Consistent with the results in vitro, OMT (50 mg/kg) inhibited Arg (250 mg/100 g) induced AP following intestinal injury in vivo. In detail, OMT resisted Arg induced inflammatory histology of both pancreas and intestine and inhibited Arg induced the change of pAKT, Bax, bcl2, TNF-a, IL-6, IL-1β, IL-10, NFkBp65, claudin 1–4 expression. Moreover, OMT inhibited Arg induced NFkBp65 and ICAM-1 expression in vivo by IHC. Oxymatrine improves Arg-induced acute pancreatitis following intestinal injury via inhibiting AKT/NFkB and claudins signaling.


Oxymatrine L-arginine Acute pancreatitis Intestinal injury Inflammation Claudins 







Acute pancreatitis


Real-time PCR


Western Blot







We thank for the Central Laboratory and General Laboratory of the First Hospital of China Medical University for technical supports. This work was supported by Natural Science Foundation from Liaoning (20170540540) and by the science and technology program from Shenyang (population and health special project, 17-230-9-36).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Al-Hanbali M, Ali D, Bustami M, Abdel-Malek S, Al-Hanbali R, Alhussainy T, Qadan F (2009) Epicatechin suppresses IL-6, IL-8 and enhances IL-10 production with NF-kappaB nuclear translocation in whole blood stimulated system. Neuro Endocrinol Lett 30(1):131–138Google Scholar
  2. Akizuki R, Shimobaba S, Matsunaga T, Endo S, Ikari A (2017) Claudin-5, -7, and -18 suppress proliferation mediated by inhibition of phosphorylation of Akt in human lung squamous cell carcinoma. Biochim Biophys Acta 1864(2):293–302Google Scholar
  3. Barmeyer C, Schulzke JD, Fromm M (2015) Claudin-related intestinal diseases. Semin Cell Dev Biol 42:30–38Google Scholar
  4. Chen X, Zhao HX, Bai C, Zhou XY (2017a) Blockade of high-mobility group box 1 attenuates intestinal mucosal barrier dysfunction in experimental acute pancreatitis. Sci Rep 7(1):6799Google Scholar
  5. Chai NL, Fu Q, Shi H, Cai CH, Wan J, Xu SP, Wu BY (2012) Oxymatrine liposome attenuates hepatic fibrosis via targeting hepatic stellate cells. World J Gastroenterol 18(31):4199–4206Google Scholar
  6. Chen Q, Duan X, Fan H, Xu M, Tang Q, Zhang L, Shou Z, Liu X, Zuo D, Yang J, Deng S, Dong Y, Wu H, Liu Y, Nan Z (2017b) Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway. Int Immunopharmacol 53:149–157Google Scholar
  7. Chavarría-Velázquez CO, Torres-Martínez AC, Montaño LF, Rendón-Huerta EP (2018) TLR2 activation induced by H. pylori LPS promotes the differential expression of claudin-4, -6, -7 and -9 via either STAT3 and ERK1/2 in AGS cells. Immunobiology 223(1):38–48Google Scholar
  8. De Souza WF, Fortunato-Miranda N, Robbs BK, de Araujo WM, de-Freitas-Junior JC, Bastos LG (2013) Claudin-3 overexpression increases the malignant potential of colorectal cancer cells: roles of ERK1/2 and PI3K-Akt as modulators of EGFR signaling. PLoS One 8(9):e74994Google Scholar
  9. Guzman JR, Koo JS, Goldsmith JR, Mühlbauer M, Narula A, Jobin C (2013) Oxymatrine prevents NF-κB nuclear translocation and ameliorates acute intestinal inflammation. Sci Rep 3:1629Google Scholar
  10. Gross CM, Kellner M, Wang T, Lu Q, Sun X, Zemskov EA, Noonepalle S, Kangath A, Kumar S, Gonzalez-Garay M, Desai AA, Aggarwal S, Gorshkov B, Klinger C, Verin AD, Catravas JD, Jacobson JR, Yuan JX, Rafikov R, Garcia JGN, Black SM (2017) LPS Induced Acute Lung Injury Involves the NF-κB-mediated Downregulation of SOX18. Am J Respir Cell Mol Biol 58(5):614–624Google Scholar
  11. Günzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93(2):525–569Google Scholar
  12. Jobin C, Haskill S, Mayer L, Panja A, Sartor RB (1997) Evidence for altered regulation of I kappa B alpha degradation in human colonic epithelial cells. J Immunol 158(1):226–234Google Scholar
  13. Fan H, Chen R, Shen L, Lv J, Xiong P, Shou Z, Zhuang X (2008) Oxymatrine improves TNBS-induced colitis in rats by inhibiting the expression of NF-kappaB p65. J Huazhong Univ Sci Technol Med Sci 28(4):415–420Google Scholar
  14. Howarth GS, Francis GL, Cool JC, Xu X, Byard RW, Read LC (1996) Milk growth factors enriched from cheese whey ameliorate intestinal damage by methotrexate when administered orally to rats. J Nutr 126(10):2519–2530Google Scholar
  15. Hong-Li S, Lei L, Lei S, Dan Z, De-Li D, Guo-Fen Q, Yan L, Wen-Feng C, Bao-Feng Y (2008) Cardioprotective effects and underlying mechanisms of oxymatrine against Ischemic myocardial injuries of rats. Phytother Res 22(7):985–989Google Scholar
  16. Hussain AR, Ahmed SO, Ahmed M, Khan OS, Al Abdulmohsen S, Platanias LC, Al-Kuraya KS, Uddin S (2012) Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One 7(6):e39945.Google Scholar
  17. Han J, Chen D, Liu D, Zhu Y (2017) Modafinil attenuates inflammation via inhibiting Akt/NF-κB pathway in apoE-deficient mouse model of atherosclerosis. Inflammopharmacology 26(2):385–393Google Scholar
  18. Krug SM, Schulzke JD, Fromm M (2014) Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 36:166–176Google Scholar
  19. Liang JX, Qu XF, Zeng WT, Zhu KL, Zhang H, Wei JJ (2010) Mechanism of oxymatrine in preventing hepatic fibrosis formation in patients with chronic hepatitis B. Nan Fang Yi Ke Da Xue Xue Bao 30(8):1871–1873Google Scholar
  20. Li W, Yu X, Tan S, Liu W, Zhou L, Liu H (2017) Oxymatrine inhibits non-small cell lung cancer via suppression of EGFR signaling pathway. Cancer Med 7(1):208–218Google Scholar
  21. Lu M, Zhang Q, Chen K, Xu W, Xiang X, Xia S (2017) The regulatory effect of oxymatrine on the TLR4/MyD88/NF-κB signaling pathway in lipopolysaccharide-induced MS1 cells. Phytomedicine 36:153–159Google Scholar
  22. Mayer J, Rau B, Gansauge F, Beger HG (2000) Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut 47(4):546–552Google Scholar
  23. Meriläinen S, Mäkelä J, Koivukangas V, Jensen HA, Rimpiläinen E, Yannopoulos F, Mäkelä T, Alestalo K, Vakkala M, Koskenkari J, Ohtonen P, Koskela M, Lehenkari P, Karttunen T, Juvonen T (2012) Intestinal bacterial translocation and tight junction structure in acute porcine pancreatitis. Hepatogastroenterology 59(114):599–606Google Scholar
  24. Ma ZJ, Li Q, Wang JB, Zhao YL, Zhong YW, Bai YF, Wang RL, Li JY, Yang HY, Zeng LN, Pu SB, Liu FF, Xiao DK, Xia XH, Xiao XH (2013) Combining oxymatrine or matrine with lamivudine increased its antireplication effect against the hepatitis B virus in vitro. Evid Based Complement Alternat Med
  25. Norman J (1998) The role of cytokines in the pathogenesis of acute pancreatitis. Am J Surg 175(1):76–83Google Scholar
  26. Oshima T, Miwa H, Joh T (2008) Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol
  27. Poritz LS, Harris LR, Kelly AA, Koltun WA (2011) Increase in the tight junction proteinclaudin-1 in intestinal inflammation. Dig Dis Sci 56:2802–2809Google Scholar
  28. Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT, Collins JE (2005) Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest 85:1139–1162Google Scholar
  29. Santos AC, Correia CA, de Oliveira DC, Nogueira-Pedro A, Borelli P, Fock RA (2016) Intravenous glutamine administration modulates TNF-α/IL-10 ratio and attenuates NFkB phosphorylation in a protein malnutrition model. Inflammation 39(6):1883–1891Google Scholar
  30. Thuijls G, Derikx JP, de Haan JJ, Grootjans J, de Bruine A, Masclee AA, Heineman E, Buurman WA (2010) Urine-based detection of intestinal tight junction loss. J Clin Gastroenterol 44:e14–e19Google Scholar
  31. Wen JB, Zhu FQ, Chen WG, Jiang LP, Chen J, Hu ZP, Huang YJ, Zhou ZW, Wang GL, Lin H, Zhou SF (2014) Oxymatrine improves intestinal epithelial barrier function involving NF-κB-mediated signaling pathway in CCl4-induced cirrhotic rats. PLoS One 9(8):e106082Google Scholar
  32. Wang W, Deng M, Liu X, Ai W, Tang Q, Hu J (2011) TLR4 activation induces nontolerant inflammatory response in endothelial cells. Inflammation 34(6):509–518Google Scholar
  33. Visigalli R, Barilli A, Parolari A, Sala R, Rotoli BM, Bussolati O, Gazzola GC, Dall’Asta V (2010) Regulation of arginine transport and metabolism by protein kinase Calpha in endothelial cells: stimulation of CAT2 transporters and arginase activity. J Mol Cell Cardiol 49(2):260–267Google Scholar
  34. Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR (2008) Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest 88:1110–1120Google Scholar
  35. Yao N, Wang X (2014) In vitro immunomodulatory activity of oxymatrine on Toll-like receptor 9 signal pathway in chronic hepatitis B. Am J Chin Med 42(6):1399–1410Google Scholar
  36. Yılmaz EE, Bozdağ Z, Ibiloğlu I, Arıkanoğlu Z, Yazgan ÜC, Kaplan I, Gümüş M, Atamanalp SS (2016) Therapeutic effects of ellagic acid on L-arginin induced acute pancreatitis. Acta Cir Bras 31(6):396–401Google Scholar
  37. Zhang Z, Wang Y, Dong M, Cui J, Rong D, Dong Q (2012) Oxymatrine ameliorates L-arginine-induced acute pancreatitis in rats. Inflammation 35(2):605–613Google Scholar
  38. Zhao J, Yu S, Tong L, Zhang F, Jiang X, Pan S, Jiang H, Sun X (2008) Oxymatrine attenuates intestinal ischemia/reperfusion injury in rats. Surg Today 38(10):931–937Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hui Zang
    • 1
    • 2
  • Zhiqiang Zhang
    • 1
    • 2
  • Qingfeng Liu
    • 1
    • 2
    Email author
  • Huimin Xiao
    • 2
  • Tian Sun
    • 2
  • Enling Guo
    • 1
  • Lankun Zhang
    • 2
  • Bensong Gong
    • 1
    • 2
  1. 1.Department of General SurgeryThe People’s Hospital of Liaoning ProvinceShenyangChina
  2. 2.Department of General SurgeryThe People’s Hospital of China Medical UniversityShenyangChina

Personalised recommendations