Skip to main content
Log in

Synthesis, antimycobacterial evaluation, and QSAR analysis of meso-dihydroguaiaretic acid derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The increasing incidence of new tuberculosis cases and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis have drawn the attention of researchers to the chemical derivatization of promising antimycobacterial natural products. Meso-dihydroguaiaretic acid (meso-DGA) has reported to possess modest activity against sensitive (H37Rv) and resistant M. tuberculosis strains. To improve the antimycobacterial properties of meso-DGA, a series of 19 meso-DGA derivatives bearing carbamates and ethers were synthesized and tested against H37Rv and two MDR strains. Among the carbamates, 2, 3, 5, and 6 exhibited the lowest minimal inhibitory concentration (MIC) values against one MDR strain (MICs of 25 and 12.5 µg/mL), with 6 being the most lipophilic and potent. On the other hand, ethers 10, 12, 14, and 18 showed MIC values in the range of 6.25–50 µg/mL against the three strains, with 14 being the most potent. The larger the chain length in the mono-alkenylated ethers (10, 12, and 14), the lower the MIC value; moreover, a correlation between the chain length of these ethers and the lipophilic character and antimycobacterial activity was observed. The safety profile of the most bioactive derivatives 6 and 14 indicated that 6 (SI > 10) was more toxic to sensitive and MDR strains than to Vero cells, whereas 14 (SI < 3) was more toxic to mammalian cells than to M. tuberculosis strains. Nevertheless, the safety profile of 6 and the potent antimycobacterial activity of 14 make them potential candidates for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Awasthi D, Kumar K, Knudson SE, Slayden R, Ojima I (2013) SAR studies on trisubstituted benzimidazoles as inhibitors of Mtb FtsZ for the development of novel antitubercular agents. J Med Chem 56:9756–9770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA (2013) Jaguar: a high‐performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113:2110–2142

    Article  CAS  Google Scholar 

  • Bologa CG, Ursu O, Oprea TI, Melançon III CE, Tego GE (2013) Emerging trends in the discovery of natural product antibacterials. Curr Opin Pharmacol 13:678–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JJ, Chou ET, Peng CF, Chen IS, Yang SZ, Huang HY (2007) Novel epoxyfuranoid lignans and antitubercular constituents from the leaves of Beilschmiedia tsangii. Planta Med 73:567–571

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Soto A, Balderas-Rentería I, Rivera G, Segura-Cabrera A, Garza-González E, Camacho-Corona MDR (2014) Potential mechanism of action of meso-dihydroguaiaretic acid on Mycobacterium tuberculosis H37Rv. Molecules 19:20170–20182

    Article  PubMed  Google Scholar 

  • Collins LA, Franzblau SG (1997) Microplate almar blue assay versus BACTEC 460 system for high-throughput screeing of compunds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41:1004–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  • Favela-Hernández JMJ, García A, Garza-González E, Rivas-Galindo VM, Camacho-Corona MR (2012) Antibacterial and antimycobacterial lignans and flavonoids from Larrea tridentata. Phytother Res 26:1957–1960

    Article  PubMed  Google Scholar 

  • Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH (1998) Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 36:362–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • García A, Bocanegra-García V, Palma-Nicolás JP, Rivera G (2012) Recent advances in antitubercular natural products. Eu J Med Chem 49:1–23

    Article  Google Scholar 

  • Ghosh AK, Brindisi M (2015) Organic carbamates in drug design and medicinal chemistry. J Med Chem 58:2895–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Medina M, Méndez-Lucio O, Medina-Franco JL (2017) Activity landscape plotter: a web-based application for the analysis of structure–activity relationships. J Chem Inf Model 57:397–402. https://doi.org/10.1021/acs.jcim.6b00776

    Article  PubMed  Google Scholar 

  • Hwu JR, Tseng WN, Gnabre J et al. (1998) Antiviral activities of methylated nordihydroguaiaretic acids. 1. Synthesis, structure identification, and inhibition of tat-regulated HIV transactivation. J Med Chem 41:2994–3000. https://doi.org/10.1021/jm970819w

    Article  CAS  PubMed  Google Scholar 

  • Inturi B, Pujar GV, Purohit MN (2016) Recent advances and structural features of enoyl-ACP reductase inhibitors of mycobacterium tuberculosis. Arch Pharm 349:817–826. https://doi.org/10.1002/ardp.201600186

    Article  CAS  Google Scholar 

  • Kanetaka H, Koseki Y, Taira J et al. (2015) Discovery of InhA inhibitors with anti-mycobacterial activity through a matched molecular pair approach. Eur J Med Chem 94:378–385. https://doi.org/10.1016/j.ejmech.2015.02.062

    Article  CAS  PubMed  Google Scholar 

  • Kar SS, Bhat GV, Rao PP, Shenoy VP, Bairy I, Shenoy GG (2016) Rational design and synthesis of novel diphenyl ether derivatives as antitubercular agents. Drug Des Dev Ther 10:2299–2310

    Article  Google Scholar 

  • Kumar K, Awasthi D, Lee S-Y, Zanardi I, Ruzsicska B, Knudson S, Tonge PJ, Slayden RA, Ojima I (2011) Novel trisubstituted benzimidazoles, targeting Mtb FtsZ, as a new class of antitubercular agents. J Med Chem 54:374–381

    Article  CAS  PubMed  Google Scholar 

  • Laxminarayan R, Duse A, Wattal CZaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Antibiotic resistance—the need for global solutions. Lancet Infect Dis 13:1057–1098

    Article  PubMed  Google Scholar 

  • Medina-Franco JL (2012) Scanning structure–activity relationships with structure–activity similarity and related maps: from consensus activity cliffs to selectivity switches. J Chem Inf Model 52:2485–2493

    Article  CAS  PubMed  Google Scholar 

  • Merget B, Sotriffer CA (2015) Slow-onset inhibition of Mycobacterium tuberculosis InhA: revealing molecular determinants of residence time by MD simulations. PLoS One 10:e0127009/1–e0127009/4

    Article  CAS  Google Scholar 

  • Pan P, Knudson SE, Bommineni GR, Li H-J, Lai C-T, Liu N, Garcia-Diaz M, Simmerling C, Patil SS, Slayden RA, Tonge PJ (2014) Time-dependent diaryl ether inhibitors of InhA: structure–activity relationship studies of enzyme inhibition, antibacterial activity, and in vivo efficacy. Chem Med Chem 9:776–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park B, Awasthi D, Chowdhury SR, Melief EH, Kumar K, Knudson SE, Slayden RA, Ojima I (2014) Design, synthesis and evaluation of novel 2,5,6-trisubstituted benzimidazoles targeting FtsZ as antitubercular agents. Bioorg Med Chem 22:2602–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Melo K, García A, Romo-Mancillas A, Garza-González E, Rivas-Galindo VM, Miranda LD, Varga-Villarreal J, Favela-Hernández JMJ, Camacho-Corona MR (2017) meso-Dihydroguaiaretic acid derivatives with antibacterial and antimycobacterial activity. Bioorgan Med Chem 25:5247–5259

    Article  CAS  Google Scholar 

  • Roughley SD, Jordan AM (2011) The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J Med Chem 54:3451–3479

    Article  CAS  PubMed  Google Scholar 

  • Sacchettini JC, Rubin EJ, Freundlich JS (2008) Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nat Rev Micro 6:41–52

    Article  CAS  Google Scholar 

  • Santhosh RS, Suriyanarayanan B (2014) Plants: a source for new antimycobacterial drugs. Planta Med 80:9–21. https://doi.org/10.1055/s-0033-1350978

    CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Stumpfe D, Hu Y, Dimova D, Bajorath J (2014) Recent progress in understanding activity cliffs and their utility in medicinal chemistry. J Med Chem 57:18–28

    Article  CAS  PubMed  Google Scholar 

  • Tosco P, Balle T (2011) Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J Mol Model 17:201–208

    Article  PubMed  Google Scholar 

  • Tosco P, Balle T, Shiri F (2011) Open3DALIGN: an open-source software aimed at unsupervised ligand alignment. J Comp Aided Mol Des 25:777

    Article  CAS  Google Scholar 

  • Villemagne B, Crauste C, Flipo M (2012) Tuberculosis: the drug development pipeline at a glance. Eur J Med Chem 51:1–16

    Article  CAS  PubMed  Google Scholar 

  • WHO (2016) Global Tuberculosis Report 2016. http://apps.who.int/medicinedocs/documents/s23098en/s23098en.pdf. Accessed 30 Nov 2017

Download references

Acknowledgements

Financial support is gratefully acknowledged to CONACYT-México through project number 237248. We also give thanks to Foundation IMSS for the grant received by Rosa Esther Moo-Puc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abraham García or María del Rayo Camacho-Corona.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez-Villarreal, K.G., García, A., Romo-Mancillas, A. et al. Synthesis, antimycobacterial evaluation, and QSAR analysis of meso-dihydroguaiaretic acid derivatives. Med Chem Res 27, 1026–1042 (2018). https://doi.org/10.1007/s00044-017-2125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-2125-1

Keywords

Navigation