Advertisement

Medicinal Chemistry Research

, Volume 27, Issue 1, pp 95–114 | Cite as

Molecular modeling, pK a and thermodynamic values of asthma drugs

  • Mobina Alimohammady
  • Mansour JahangiriEmail author
  • Farhoush Kiani
  • Hasan Tahermansouri
Original Research

Abstract

This study investigates on optimized structure, pK a values and thermodynamic properties of four asthma drugs, e.g., salbutamol, terbutaline, salmeterol, and formoterol, in aqueous solution using ab initio and DFT methods at different temperatures. The molecular conformations and solute–solvent interactions of the cations, neutrals, and anions molecules of the drugs were investigated. Further, the best ionization reaction and Tomasi’s method at the B3LYP/6-31 + G(d) level of theory were used to calculate ∆G and pK a values. For the validation, the pK a values and ionization mechanisms of salbutamol and terbutaline are calculated. Furthermore, ionization schemes are proposed for formoterol and salmeterol drugs, and their pK a values at different temperature are calculated. Moreover, the chemical reactions tendency calculation showed that net electrophilicity of terbutaline, the chemical potential of salbutamol, and electronegativity of formoterol were more than the other four asthma drugs in this work. Theoretical calculation of HOMO–LUMO gap shows that the maximum and minimum gaps were for salbutamol and terbutaline, respectively. Besides, charge density distribution and site of chemical reactivity of the asthma drugs are studied by mapping electron density isosurface with molecular electrostatic potential (MEP). Also, thermodynamic properties of the drugs in aqueous solution show negative values for ∆S and positive values for ∆G.

Keywords

Asthma drugs DFT Thermodynamic properties Optimization pKa 

Notes

Acknowledgements

The financial and encouragement support provided by the Research Vice Presidency of Semnan University and Ayatollah Amoli Branch, Islamic Azad University.

Compliance with ethical standards

Conflict of interest

The authors wish to thank from computer center of faculty of Chemical, Petroleum and Gas eng. of Semnan University.

Supplementary material

44_2017_2038_MOESM1_ESM.docx (141 kb)
Supplementary Information

References

  1. Abdul F, Gurpreet S, Ishar M (2010) In vitro passive and iontophoretically assisted transport of salbutamol sulphate through hairless mice skin. Int J Pharm Sci Nanotech 3:811–818Google Scholar
  2. Akmese B, Sanli S, Sanli N, Asan A (2014) A validated RP-LC method for salmeterol and fluticasone in their binary mixtures and their stress degradation behavior under ICH-recommended stress conditions. J Anal Chem 69:563–573CrossRefGoogle Scholar
  3. Albert A (2012) The determination of ionization constants: a laboratory manual. Springer, New York CityGoogle Scholar
  4. Allen R, Box K, Comer J, Peake C, Tam K (1998) Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. J Pharm Biomed Anal 17:699–712CrossRefPubMedGoogle Scholar
  5. Ando HY, Heimbach T (1997) pK a determinations by using a HPLC equipped with DAD as a flow injection apparatus. J Pharm Biomed Anal 16:31–37CrossRefPubMedGoogle Scholar
  6. Angelov T, Vlasenko A, Tashkov W (2007) HPLC determination of pKa of parabens and investigation on their lipophilicity parameters. J Liq Chromatogr Relat Technol 31:188–197CrossRefGoogle Scholar
  7. Archer SJ, Domaille PJ, Laue ED (1996) New NMR methods for structural studies of proteins to aid in drug design. Ann Rep Med Chem 31:299–307CrossRefGoogle Scholar
  8. Atkins P, de Paula J (2006) Physical Chemistry (8th Edition). Oxford University Press, Oxford, UKGoogle Scholar
  9. Austin RP, Barton P, Davis AM, Manners CN, Stansfield MC (1998) The effect of ionic strength on liposome–buffer and 1‐octanol–buffer distribution coefficients. J Pharm Sci 87:599–607CrossRefPubMedGoogle Scholar
  10. Avdeef A, Bucher JJ (1978) Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-controlled automatic titrator. Anal Chem 50:2137–2142CrossRefGoogle Scholar
  11. Avdeef A, Comer JE, Thomson SJ (1993) pH-Metric log P. 3. Glass electrode calibration in methanol-water, applied to pKa determination of water-insoluble substances. Anal Chem 65:42–49CrossRefGoogle Scholar
  12. Bani-Yaseen AD, Mo’ala A (2014) Spectral, thermal, and molecular modeling studies on the encapsulation of selected sulfonamide drugs in β-cyclodextrin nano-cavity. Spectrochim Acta Mol Biomol Spectrosc 131:424–431CrossRefGoogle Scholar
  13. Barisione G, Baroffio M, Crimi E, Brusasco V (2010) Beta-adrenergic agonists. Pharmaceuticals 3:1016–1044CrossRefPubMedPubMedCentralGoogle Scholar
  14. Baur Fo, Beattie D, Beer D, Bentley D, Bradley M, Bruce I, Charlton SJ, Cuenoud B, Ernst R, Fairhurst RA (2010) The identification of indacaterol as an ultralong-acting inhaled β2-adrenoceptor agonist. J Med Chem 53:3675–3684CrossRefPubMedGoogle Scholar
  15. Bernstein JA, Levy ML (2014) Clinical Asthma: Theory and Practice. CRC PressGoogle Scholar
  16. Bluyssen PM (2013) The Healthy Indoor Environment: How to Assess Occupants’ Wellbeing in Buildings. Abingdon-on-Thames, RoutledgeGoogle Scholar
  17. Box K, Bevan C, Comer J, Hill A, Allen R, Reynolds D (2003) High-throughput measurement of p K a values in a mixed-buffer linear pH gradient system. Anal Chem 75:883–892CrossRefPubMedGoogle Scholar
  18. Bultinck P, De Winter H, Langenaeker W, Tollenare JP (2003) Computational medicinal chemistry for drug discovery. CRC Press, Boca Raton, FloridaGoogle Scholar
  19. Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix‐inversion procedures and the renormalization of the apparent charges. J Comput Chem 16:1449–1458CrossRefGoogle Scholar
  20. Chaires JB (2008) Calorimetry and thermodynamics in drug design. Annu Rev Biophys 37:135–151CrossRefPubMedGoogle Scholar
  21. Chiang P-C, Hu Y (2009) Simultaneous determination of LogD, LogP, and pKa of drugs by using a reverse phase HPLC coupled with a 96-well plate auto injector. Comb Chem High Throughput Screen 12:250–257CrossRefPubMedGoogle Scholar
  22. Day, P (1974) Electronic Structure and Magnetism of Inorganic Compounds. London Royal Society of Chemistry, Burlington HouseGoogle Scholar
  23. Demiralay EC, Alsancak G, Ozkan SA (2009) Determination of pKa values of nonsteroidal antiinflammatory drug‐oxicams by RP–HPLC and their analysis in pharmaceutical dosage forms. J Sep Sci 32:2928–2936CrossRefPubMedGoogle Scholar
  24. Dodson LG, Vogt RA, Marks J, Reichardt C, Crespo-Hernández CE (2011) Photophysical and photochemical properties of the pharmaceutical compound salbutamol in aqueous solutions. Chemosphere 83:1513–1523CrossRefPubMedGoogle Scholar
  25. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, Hoboken, New JerseyGoogle Scholar
  26. Gampp H, Maeder M, Meyer CJ, Zuberbühler AD (1985) Calculation of equilibrium constants from multiwavelength spectroscopic data—I: mathematical considerations. Talanta 32:95–101CrossRefPubMedGoogle Scholar
  27. Garrido G, Ràfols C, Bosch E (2006) Acidity constants in methanol/water mixtures of polycarboxylic acids used in drug salt preparations: Potentiometric determination of aqueous pKa values of quetiapine formulated as hemifumarate. Eur J Pharm Sci 28:118–127CrossRefPubMedGoogle Scholar
  28. Gázquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. The Journal of Physical Chemistry A 111:1966–1970Google Scholar
  29. Haghi AK (2013) Methodologies and Applications for Chemoinformatics and Chemical Engineering. IGI GlobalGoogle Scholar
  30. Hamacher M, Marcus K, Stühler K, van Hall A, Warscheid B, Meyer HE, Mannhold R, Kubinyi H, Folkers G (2006) Proteomics in Drug Research. John Wiley & Sons, Hoboken, New JerseyGoogle Scholar
  31. Hsu WH (2013) Handbook of Veterinary Pharmacology. WileyGoogle Scholar
  32. Ijzerman A, Bultsma T, Timmerman H, Zaagsma J (1984) The ionization of β‐adrenoceptor agonists: a method for unravelling ionization schemes. J Pharm Pharmacol 36:11–15CrossRefPubMedGoogle Scholar
  33. Janoš P (2004) Determination of equilibrium constants from chromatographic and electrophoretic measurements. J Chromatogr A 1037:15–28CrossRefPubMedGoogle Scholar
  34. Johnson M, Butchers P, Coleman R, Nials A, Strong P, Summer M, Vardey C, Whelan C (1993) The pharmacology of salmeterol. Life Sci 52:2131–2143CrossRefPubMedGoogle Scholar
  35. Joseph-McCarthy D (1999) Computational approaches to structure-based ligand design. Pharmacol Ther 84:179–191CrossRefPubMedGoogle Scholar
  36. Kiani F, Abbaszadeh M, Pousti M, Koohyar F (2015a) Ab initio and DFT studies on ionization of octopamine and 6-aminopenicillanic acid in aqueous solution. Indian J Chem 54A:619–626Google Scholar
  37. Kiani F, Abbaszadeh M, Pousti M, Koohyar F (2015b) Theoretically nanoscale study on ionization of muscimol nano drug in aqueous solution. Braz J Pharm Sci 51:213–219CrossRefGoogle Scholar
  38. Kiani F, Behzadi H, Koohyar F (2015c) Thermodynamic study of asparagine and glycyl-asparagine using computational methods. Braz Arch Biol Technol 58:477–486CrossRefGoogle Scholar
  39. Kiani F, Izadi H, Tahermansouri H, Koohyar F (2014) Determination of acidic dissociation constants of glutamine and isoleucine in water using ab initio methods. Turkish Journal of Biochemistry/Turk Biyokimya Dergisi 39:503–515Google Scholar
  40. Kiani F, Khanlarzadeh B, Tahermansouri H (2016) Ab initio and density functional theory study on ionization of betahistidine and cimetidine nano drug in aqueous solution. Farmacia 64:339–347Google Scholar
  41. Kiani F, Rostami AA, Sharifi S, Bahadori A (2010a) Calculation of acidic dissociation constants of glycylglycine in water at different temperatures using ab initio methods. J Mol Struc 956:20–25CrossRefGoogle Scholar
  42. Kiani F, Rostami AA, Sharifi S, Bahadori A, Chaichi MJ (2010b) Determination of acidic dissociation constants of glycine, valine, phenylalanine, glycylvaline, and glycylphenylalanine in water using ab initio methods. J Chem Eng Data 55:2732–2740CrossRefGoogle Scholar
  43. Kiani F, Yeganegi S, Rostami AA, Sharifi S (2009) ab initio Study of Restricted Rotation in N-Nitroso-azirine and N-Nitroso-diaziridine. Asian J Chem 21:1210Google Scholar
  44. Kirsch L, Zhang S, Muangsiri W, Redmon M, Luner P, Wurster D (2001) Development of a lyophilized formulation for (R, R)-formoterol (L)-tartrate. Drug Dev Ind Pharm 27:89–96CrossRefPubMedGoogle Scholar
  45. Lombardi D, Cuenoud B, Krämer SD (2009a) Lipid membrane interactions of indacaterol and salmeterol: do they influence their pharmacological properties? Eur J Pharm Sci 38:533–547CrossRefPubMedGoogle Scholar
  46. Lombardi D, Cuenoud B, Wunderli-Allenspach H, Krämer SD (2009b) Interaction kinetics of salmeterol with egg phosphatidylcholine liposomes by surface plasmon resonance. Anal Biochem 385:215–223CrossRefPubMedGoogle Scholar
  47. Ma D-L, Chan DS-H, Lee P, Kwan MH-T, Leung C-H (2011) Molecular modeling of drug–DNA interactions: virtual screening to structure-based design. Biochimie 93:1252–1266CrossRefPubMedGoogle Scholar
  48. Macháčková M, Tokarský J, Čapková P (2013) A simple molecular modeling method for the characterization of polymeric drug carriers. Eur J Pharm Sci 48:316–322CrossRefPubMedGoogle Scholar
  49. Manderscheid M, Eichinger T (2003) Determination of pKa values by liquid chromatography. J Chromatogr Sci 41:323–326CrossRefPubMedGoogle Scholar
  50. Marechal Y (2006) The Hydrogen Bond and the Water Molecule: The Physics and Chemistry of Water, Aqueous and Bio-Media. Elsevier ScienceGoogle Scholar
  51. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129CrossRefGoogle Scholar
  52. Miller JM, Blackburn AC, Shi Y, Melzak AJ, Ando HY (2002) Semi‐empirical relationships between effective mobility, charge, and molecular weight of pharmaceuticals by pressure‐assisted capillary electrophoresis: Applications in drug discovery. Electrophoresis 23:2833–2841CrossRefPubMedGoogle Scholar
  53. Mondragón‐Sánchez JA, Santamaria R, Garduño‐Juárez R (2011) Docking on the DNA G‐quadruplex: A molecular electrostatic potential study. Biopolymers 95:641–650CrossRefPubMedGoogle Scholar
  54. Narasimham L, Barhate VD (2011) Physico-chemical characterization of some beta blockers and anti-diabetic drugs-potentiometric and spectrophotometric pKa determination in different co-solvents. Eur J Chem 2:36–46CrossRefGoogle Scholar
  55. National Asthma Education and Prevention Program, Third Expert Panel on the Diagnosis and Management of Asthma (2007) Definition, Pathophysiology and Pathogenesis of Asthma, and Natural History of Asthma (Section 2)Google Scholar
  56. Newton DW, Kluza RB (1978) pKa values of medicinal compounds in pharmacy practice. Ann Pharmacother 12:546–554Google Scholar
  57. Nogrady T, Weaver DF (2005) Medicinal Chemistry: A Molecular and Biochemical Approach. Oxford University Press, USAGoogle Scholar
  58. Örnskov E, Linusson A, Folestad S (2003) Determination of dissociation constants of labile drug compounds by capillary electrophoresis. J Pharm Biomed Anal 33:379–391CrossRefPubMedGoogle Scholar
  59. Politzer P, Truhlar DG (2013) Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems. Springer Science & Business Media, Berlin/Heidelberg, GermanyGoogle Scholar
  60. Poole SK, Patel S, Dehring K, Workman H, Poole CF (2004) Determination of acid dissociation constants by capillary electrophoresis. J Chromatogr A 1037:445–454CrossRefPubMedGoogle Scholar
  61. Renuga S, Karthikesan M, Muthu S (2014) FTIR and Raman spectra, electronic spectra and normal coordinate analysis of N, N-dimethyl-3-phenyl-3-pyridin-2-yl-propan-1-amine by DFT method. Spectrochim. Acta Mol Biomol Spectrosc 127:439–453CrossRefGoogle Scholar
  62. Rosés M (2004) Determination of the pH of binary mobile phases for reversed-phase liquid chromatography. J Chromatogr A 1037:283–298CrossRefPubMedGoogle Scholar
  63. Ruben AJ, Kiso Y, Freire E (2006) Overcoming roadblocks in lead optimization: a thermodynamic perspective. Chem Biol Drug Des 67:2–4CrossRefPubMedGoogle Scholar
  64. Seok Y-J, Yang K-S, Kang S-O (1995) A simple spectrophotometric determination of dissociation constants of organic compounds. Anal Chim Acta 306:351–356CrossRefGoogle Scholar
  65. Shahidha R, Al-Saadi AA, Muthu S (2015) Vibrational spectroscopic studies, normal co-ordinate analysis, first order hyperpolarizability, HOMO–LUMO of midodrine by using density functional methods. Spectrochim. Acta Mol Biomol Spectrosc 134:127–142CrossRefGoogle Scholar
  66. Shalaeva M, Kenseth J, Lombardo F, Bastin A (2008) Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci 97:2581–2606CrossRefPubMedGoogle Scholar
  67. Shukla BK, Yadava U, Roychoudhury M (2015) Theoretical explorations on the molecular structure and IR frequencies of 3-phenyl-1-tosyl-1H-pyrazolo [3, 4-d] pyrimidin-4-amine in view of experimental results. J Mol Liq 212:325–330CrossRefGoogle Scholar
  68. Simplı́cio ALs, Gilmer JF, Frankish N, Sheridan H, Walsh JJ, Clancy JM (2004) Ionisation characteristics and elimination rates of some aminoindanones determined by capillary electrophoresis. J Chromatogr A 1045:233–238CrossRefPubMedGoogle Scholar
  69. Sykes DA, Charlton SJ (2012) Slow receptor dissociation is not a key factor in the duration of action of inhaled long‐acting β2‐adrenoceptor agonists. Br J Pharmacol 165:2672–2683CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tam KY, Takács-Novák K (2001) Multi-wavelength spectrophotometric determination of acid dissociation constants: a validation study. Anal Chim Acta 434:157–167CrossRefGoogle Scholar
  71. Teschemacher A, Lemoine H (1999) Kinetic analysis of drug-receptor interactions of long-acting β2 sympathomimetics in isolated receptor membranes: evidence against prolonged effects of salmeterol and formoterol on receptor-coupled adenylyl cyclase. J Pharm Exp Ther 288:1084–1092Google Scholar
  72. Tokarský J, Andrýsek T, Čapková P (2011) Molecular modeling of gel nanoparticles with cyclosporine A for oral drug delivery. Int. J. Pharm. 410:196–205CrossRefPubMedGoogle Scholar
  73. Trifilieff A (2013) Indacaterol: The First Once-daily Long-acting Beta2 Agonist for COPD. Springer Science & Business Media, Berlin/Heidelberg, GermanyGoogle Scholar
  74. Wan H, Holmén AG, Wang Y, Lindberg W, Englund M, Någård MB, Thompson RA (2003) High‐throughput screening of pKa values of pharmaceuticals by pressure‐assisted capillary electrophoresis and mass spectrometry. Rapid Commun Mass Spectrom 17:2639–2648CrossRefPubMedGoogle Scholar
  75. Wang H, Loganathan D, Linhardt RJ (1991) Determination of the pKa of glucuronic acid and the carboxy groups of heparin by 13C-nuclear-magnetic-resonance spectroscopy. Biochem J 278:689–695CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wilson AM, Dempsey OJ, Sims EJ, Lipworth BJ (2001) Evaluation of salmeterol or montelukast as second-line therapy for asthma not controlled with inhaled corticosteroids. CHEST J 119:1021–1026CrossRefGoogle Scholar
  77. Yadava U, Gupta DK, Roychoudhury M (2010) Theoretical investigations on molecular structure and IR frequencies of 4-n-nonyl-4′-cyanobiphenyl in light of experimental results. J Mol Liq 156:187–190CrossRefGoogle Scholar
  78. Yadava U, Shukla BK, Roychoudhury M (2015) Pyrazolo [3, 4-d] pyrimidines as the inhibitors of mycobacterial β-oxidation trifunctional enzyme. Med Chem Res 24:4002–4015CrossRefGoogle Scholar
  79. Yadava U, Singh M, Roychoudhury M (2011) Gas-phase conformational and intramolecular π–π interaction studies on some pyrazolo [3, 4-d] pyrimidine derivatives. Comp Theor Chem 977:134–139CrossRefGoogle Scholar
  80. Yadava U, Singh M, Roychoudhury M (2013) Pyrazolo [3, 4-d] pyrimidines as inhibitor of anti-coagulation and inflammation activities of phospholipase A2: insight from molecular docking studies. J Biol Chem 39:419–438Google Scholar
  81. Zhou C, Jin Y, Kenseth JR, Stella M, Wehmeyer KR, Heineman WR (2005) Rapid pKa estimation using vacuum‐assisted multiplexed capillary electrophoresis (VAMCE) with ultraviolet detection. J Pharm Sci 94:576–589CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mobina Alimohammady
    • 1
  • Mansour Jahangiri
    • 1
    Email author
  • Farhoush Kiani
    • 2
  • Hasan Tahermansouri
    • 2
  1. 1.Faculty of Chemical, Petroleum and Gas Eng.Semnan UniversitySemnanIran
  2. 2.Department of Chemistry, Faculty of Science, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran

Personalised recommendations