Medicinal Chemistry Research

, Volume 26, Issue 11, pp 3046–3056 | Cite as

Synthesis, in vitro evaluation of antibacterial, antifungal and larvicidal activities of pyrazole/pyridine based compounds and their nanocrystalline MS (M = Cu and Cd) derivatives

  • Gopinath Mondal
  • Harekrishna Jana
  • Moumita Acharjya
  • Ananyakumari Santra
  • Pradip Bera
  • Abhimanyu Jana
  • Anangamohan Panja
  • Pulakesh Bera
Original Research


Methyl 3,5-dimethyl pyrazole-1-dithioate (mdpa) (1), benzyl 3,5-dimethyl pyrazole-1-dithioate (bdpa) (2), 3,5-dimethylpyrazole-1-(5methyl-1H-pyrazol-3-ylmethyl)-1H-pyrazole (3), copper(II)-mdpa (4), copper(II)-bdpa (5), cadmium(II)-mdpa (6), cadmium(II)-bdpa (7), Cu2S nanoparticles (8 and 9) derived from 4 and 5, respectively, CdS nanoparticles (10 and 11) derived from 6 and 7, respectively, were synthesized to screen their antimicrobial activities. Prolonged reaction with CuCl2.2H2O and 3 followed by addition of trace amount of pyridine furnished a crystalline chloro bridged complex [Cu(μ-Cl)2(pyridine)2]n and its structure was solved by single X-ray crystallography. Antibacterial activities of all of the synthesized materials (112) were evaluated against Gram positive bacteria including Staphylococcus aureus and Bacillus subtilis and Gram negative bacteria including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Proteus vulgaris. Fungi (Candida albicans, Aspergillus flavus) were also used to test antifungal activities with the compounds. Present study revealed that 8 shows best antibacterial activity among the present reported compounds. An excellent antifugal activity is shown by 12 emerging to be a better antibiotic than standard fluconazole. Besides fungicidal effect, 12 has promising larvicidal effect. The structure and activity relationship has been discussed.


Antibacterial Antifungal Larvicidal Pyrazole/Pyridine complexes Nanoparticles 



This investigation was supported by University grants Commission (UGC), Government of India for financial support (ref. grant no.-42-280/2013(SR)) and Council for Scientific and Industrial Research (CSIR) for the project grant (No.1(2858)/16/EMR-II). We are also thankful to Dr. Nandan Bhattacharyya, Principal, Panskura Banamali College, for providing instruments for biological assay.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_2002_MOESM1_ESM.doc (10.8 mb)
Supplementary Information


  1. Albada GA, Horst MG, Mutikainen I, Turpeinen U, Reedijk J (2008) New 3,5-dimethylpyrazole copper(II) compounds with a variety of hydrogen bonds, synthesized by using a dehydrating agent: Synthesis, characterization, structures and intermolecular interactions. Inorg Chim Acta 361:3380–3387CrossRefGoogle Scholar
  2. Ansari KF, Lal C (2009a) Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. Eur J Med Chem 44:4028–4033CrossRefPubMedGoogle Scholar
  3. Ansari KF, Lal C (2009b) Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. Eur J Med Chem 44:2294–2299CrossRefPubMedGoogle Scholar
  4. Bansal Y, Silakari O (2012) The therapeutic journey of benzimidazoles: a review. Bioorg Med Chem 20:6208–6236CrossRefPubMedGoogle Scholar
  5. Baraldi PG, Saponaro G, Tabrizi MA, Baraldi S, Romagnoli R, Moorman AR, Varani K, Borea PA, Preti D (2012) Pyrrolo- and pyrazolo-[3,4-e][1,2,4]triazolo[1,5-c]pyrimidines as adenosine receptor antagonists. Bioorg Med Chem 20:1046–1059CrossRefPubMedGoogle Scholar
  6. Bekhita AA, Abdel-Aziem T (2004) Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg Med Chem 12:1935–1945CrossRefGoogle Scholar
  7. Bera P, Baek IC, Seok SI, Saha N (2009) Synthesis and spectroscopic characterization of new iron(III) complexes of S-Alkyl/Aryl dithiocarbazates of 5-methyl-3-formylpyrazole and 5-methyl-3-formylpyrazolyl-thiosemicarbazones. Russ J Coord Chem 35:526–533CrossRefGoogle Scholar
  8. Blaszczak-Swiqtkiewicz K, Mikiciuk-Olasik E (2015) Some characteristics of activity of potential chemotherapeutics–benzimidazole derivatives. Adv Med Sci 60:125–132CrossRefGoogle Scholar
  9. Boiani M, Gonzalez M (2005) Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev Med Chem 5:409–424CrossRefPubMedGoogle Scholar
  10. Bruker, SAINT (Version 6.28a) and SADABS (Version 2.03) (2001) Data reduction and absorption correction program. Bruker AXS Inc, Madison, WisconsinGoogle Scholar
  11. Bruker, SMART (Version 5.625) (2001) Data collection program. Bruker AXS Inc., Madison, WisconsinGoogle Scholar
  12. Camargo TP, Maia FF, Chaves C, de Souza B, Bortoluzzi AJ, Castilho N, Bortolotto T, Terenzi H, Castellano EE, Haase W, Tomkowicz Z, Peralta RA, Neves A (2015) Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: catalytic promiscuity. J Inorg Biochem 146:77–88CrossRefPubMedGoogle Scholar
  13. Castro AR, Rivera IL, Rojas LC, Vazquez GN, Rodrı´guez AN (2011) Synthesis and preliminary evaluation of selected 2-aryl-5 (6)- nitro-1H-benzimidazole derivatives as potential anticancer agents. Arch Pharm Res 34:181–189CrossRefGoogle Scholar
  14. Chandna N, Kapoor JK, Grover J, Bairwa K, Goyalc V, Jachak SM (2014) Pyrazolyl benzyltriazoles as cyclooxygenase inhibitors: synthesis and biological evaluation as dual anti-inflammatory and antimicrobial agents. New J Chem 38:3662–3672CrossRefGoogle Scholar
  15. Desai KG, Desai KR (2006) Green route for the heterocyclization of 2-mercaptobenzimidazole into β-lactum segment derivatives containing –CONH– bridge with benzimidazole: screening in vitro antimicrobial activity with various microorganisms. Bioorg Med Chem 14:8271–8279CrossRefPubMedGoogle Scholar
  16. Dumitz JD (1957) The crystal structures of copper dipyridine dichloride and the violet form of cobalt dipyridine dichloride. Acta Cryst 10:307–313CrossRefGoogle Scholar
  17. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis and Biological Applications. Acc Chem Res 42(8):1097–1107CrossRefPubMedGoogle Scholar
  18. Gao J, Xu B (2009) Application of Nano materials inside cell. Nano Today 4:37–51CrossRefGoogle Scholar
  19. Goker H, Kus C, Boykin DW, Yildiz S, Altanlar N (2002) Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against Candida species. Bioorg Med Chem 10:2589–2596CrossRefPubMedGoogle Scholar
  20. Gomha S, Khalil K, Abdel-aziz H, Abdalla MM (2015) Synthesis and antihypertensive α-blocking activity evaluation of thiazole derivatives bearing pyrazole moiety. Heterocycles 91(9):1763–1773CrossRefGoogle Scholar
  21. Gouda MA (2015) Synthesis and antioxidant evaluation of some novel thiophene, pyrazole, chromene, pyrazolotriazine derivatives bearing sulfonamide moiety. J Heterocycl Chem. doi:10.1002/jhet.2576CrossRefGoogle Scholar
  22. Guerin-Faublee V, Muller MLD, Vigneulle M, Flandrois JP (1996) Application of a modified disc diffusion technique to antimicrobial susceptibility testing of Vibrio anguillarum, Aeromonassalmonicida clinical isolates. Vet Microbiol 51:137–149CrossRefPubMedGoogle Scholar
  23. Gupta R, Pathak D, Jindal DP (1996) Synthesis and biological activity of azasteroidal [3,2-c]- and [17,16-c]pyrazoles. Eur J Med Chem 31:241–247CrossRefGoogle Scholar
  24. Guven OO, Erdogan T, Goker H, Yildiz S (2007) Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers. Bioorg Med Chem Lett 17:2233–2236CrossRefPubMedGoogle Scholar
  25. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698CrossRefGoogle Scholar
  26. Kaur G, Kaur M, Silakari O (2014) Benzimidazoles: an ideal privileged drug scaffold for the design of multitargeted anti-inflammatory ligands. Mini Rev Med Chem 14:747–767CrossRefPubMedGoogle Scholar
  27. Klimesova V, Koci J, Pour M, Stachel J, Waisser K, Kaustova J (2002) Synthesis and preliminary evaluation of benzimidazole derivatives as antimicrobial agents. Eur J Med Chem 37:409–418CrossRefPubMedGoogle Scholar
  28. Kupcewicz B, Ciolkowski M, Karwowski BT, Rozalski M, Krajewska U, Lorenz IP, Mayer P, Budzisz E (2013) Copper(II) complexes with pyrazole derivatives–synthesis, crystal structure, DFT calculations and cytotoxic activity. J Mol Struct 1052:32–37CrossRefGoogle Scholar
  29. Malik MA, Afzaal M, O’Brien P (2010) Precursor chemistry for main group elements in semiconducting materials. Chem Rev 110(7):4417–4446CrossRefPubMedGoogle Scholar
  30. Malvar DC, Ferreira RT, de Castro RA, de Castro LL, Freitas AC, Costa EA, Florentino IF, Mafra JC, de Souza GE, Vanderlinde FA (2014) Antinociceptive, anti-inflammatory and antipyretic effects of 1,5-diphenyl-1H-Pyrazole-3-carbohydrazide, a new heterocyclic pyrazole derivative. Life Sci 95(2):81–88CrossRefGoogle Scholar
  31. Mavrova AT, Denkova P, Tsenov YA, Anichina KK, Vutchev DI (2007) Synthesis and antitrichinellosis activity of some bis(benzimidazol-2-yl)amines. Bioorg Med Chem 15:6291–6297CrossRefPubMedGoogle Scholar
  32. Mert S, Yağlıoğlu AŞ, Demirtas I, Kasımoğullar R (2014) Synthesis and antiproliferative activities of some pyrazole-sulfonamide derivatives. Med Chem Res 23:1278–1289CrossRefGoogle Scholar
  33. Mitic D, Milenkovic M, Milosavljevic S, GoCevac D, Miodragovic Z, AnCelkovic K, Miodragovic D (2009) Synthesis, characterization and antimicrobial activity of Co(II), Zn(II) and Cd(II)complexes with N-benzyloxycarbonyl-S-phenylalanine. Eur J Med Chem 44:1537–1544CrossRefPubMedGoogle Scholar
  34. Mohammad BG, Hussien MA, Abdel-Alim AA, Hashem M (2006) Synthesis and antimicrobial activity of some new 1-alkyl-2-alkylthio-1,2,4-triazolobenzimidazole derivatives. Arch Pharm Res 29:26–33CrossRefGoogle Scholar
  35. Mondal G, Bera P, Santra A, Jana S, Mondal T, Seok SI, Mondal A, Bera P (2014) Precursor-driven selective synthesis of hexagonalchalcocite (Cu2S) nanocrystals: structural, optical, electrical and photocatalytic properties. New J Chem 38:4774–4782CrossRefGoogle Scholar
  36. Mondal G, Acharjya M, Santra A, Bera P, Jana S, Pramanik NC, Mondal A, Bera P (2015a) A new pyrazolyldithioate function in theprecursor for the shape controlled growth of CdS nanocrystals: optical and photocatalytic activities. New J Chem 39:9487–9496CrossRefGoogle Scholar
  37. Mondal G, Jana S, Santra A, Acharjya M, Bera P, Chattopadhyay D, Mondal A, Bera P (2015b) Single-source mediated facile electrosynthesis of p-Cu2S thin films on TCO (SnO2:F) with enhanced photocatalytic activities. RSC Adv 5:52235–52242CrossRefGoogle Scholar
  38. Mondal G, Santra A, Bera P, Acharjya M, Jana S, Chattopadhyay D, Mondal A, Seok SI, Bera P (2016) A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: synthesis, optical and photocatalytic activity. J Nanopart Res 18:311. doi: 10.1007/s11051-016-3538-3 CrossRefGoogle Scholar
  39. Mowbray CE, Braillard S, Speed W, Glossop PA, Whitlock GA, Gibson KR, Mills JE, Brown AD, Gardner JM, Cao Y, Hua W, Morgans GL, Feijens PB, Matheeussen A, Maes LJ (2015) Novel amino-pyrazole ureas with potent in vitro and in vivo antileishmanial activity. J Med Chem 58(24):9615–9624CrossRefPubMedGoogle Scholar
  40. Nostro A (2000) Extraction methods and bioautography forevaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 30(1):379–384CrossRefPubMedGoogle Scholar
  41. Nyamen LD, Revaprasadu N, Pullabhotla RVSR, Nejo AA, Ndifon PT, Malik MA, O’Brien P (2013) Synthesis of multi-podal CdS nanostructures using heterocyclic dithiocarbamato complexes as precursors. Polyhedron 56:62–70CrossRefGoogle Scholar
  42. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC et al. (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:15–27CrossRefGoogle Scholar
  43. Pawar NS, Dalal DS, Shimpi SR, Mahulikar PP (2004) Studies of antimicrobial activity of N-alkyl and N-acyl 2-(4-thiazolyl)-1H-benzimidazoles. Eur J Pharm Sci 21:115–118CrossRefPubMedGoogle Scholar
  44. Porcari AR, Devivar RV, Kucera LS, Drach JC, Townsend LB (1998) Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)-2-substituted-5,6-dichlorobenzimidazoles as nonnucleoside analogues of 2,5,6-trichloro-1-(b-D-ribofuranosyl)benzimidazole. J Med Chem 41:1252–1262CrossRefPubMedGoogle Scholar
  45. Raman N, Joseph J, Velan AS, Pothiraj C (2006) Antifungal activities of biorelevant complexes of copper(II) with biosensitive macrocyclic ligands. Mycobiology 34(4):214–218CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rao PNP, Knaus EE (2008) COX-Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci 11(2):81s–110sCrossRefPubMedGoogle Scholar
  47. Roubaty JL, Revillon A, Breant M (1977) A polarographic study of the pyridine-copper-chloride complexes in methanol and determination of the stability constants. Talanta 24(11):688–690CrossRefPubMedGoogle Scholar
  48. Roy TG, Hazari SK, Dey BK, Meah HA, Rahman MS, Kim DI et al. (2007) Synthesis, electrolytic behaviour and antimicrobial activities of cadmium complexes of isomers of 3,10-C- meso -3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane. J Coord Chem 60(14):1567–1578CrossRefGoogle Scholar
  49. Roy TG, Hazari SK, Dey BK, Miah HA, Olbrich F, Rehder D (2007) Synthesis and antimicrobial activities of isomers of N(4),N(11)-Dimethyl-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane and their nickel(II) complexes. Inorg Chem 46(13):5372–5380CrossRefPubMedGoogle Scholar
  50. Santra A, Mondal G, Acharjya M, Bera P, Panja A, Mandal TK, Mitra P, Bera P (2016) Catechol oxidase mimetic activity of copper(I) complexesof 3,5-dimethyl pyrazole derivatives: Coordination behavior, X-ray crystallography and electrochemical study. Polyhedron1 13:5–15CrossRefGoogle Scholar
  51. Sheldrick GM (2001) SHELXTL (Version 6.12) Structure Analysis Program. Bruker AXS Inc, Madison, WisconsinGoogle Scholar
  52. Singh K, Kumar Y, Puri P, Kumar M, Sharm C (2012) Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies. Eur J Med Chem 52:313–321CrossRefPubMedGoogle Scholar
  53. Sobiesiak M, Muzioł T, Rozalski M, Krajewska U, Budzisz E (2014) Co(II), Ni(II) and Cu(II) complexes with phenylthiazole and thiosemicarbazone-derived ligands: synthesis, structure and cytotoxic effects. New J Chem 38:5349–5361CrossRefGoogle Scholar
  54. Tavares LS, Silva CSF, de Souza VC, da Silva VL, Diniz CG, Santos MO (2013) Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. Front Microbiol 4:412–218CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tomalia DA (2009) In quest of a systematic framework for unifying and defining nanoscience. J Nanopart Res 11:1251–1310CrossRefPubMedPubMedCentralGoogle Scholar
  56. Vanden Berghe DA, Vlietinck AJ (1991) Screening methods for antibacterial and antiviral agents from higher plants. In: Dey PMp, Harbone J B (eds) Methods in plant biochemistry. Academic, London, p 47–69Google Scholar
  57. Viveka S, Dinesha, Shama P, Naveen S, Lokanath NK, Nagaraja GK (2015) Design, synthesis, anticonvulsant and analgesic studies of new pyrazole analogues: a Knoevenagel reaction approach. RSC Adv 5:94786–94795CrossRefGoogle Scholar
  58. Wade D, Silveira A, Rollins-Smith L, Bergman T, Silberring J, Lankinen H (2001) Hematological and antifungal properties of temporin A and a cecropin A-temporinA hybrid. Acta Biochim Pol 48:1185–1189PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Post Graduate Department of Chemistry, Panskura Banamali CollegeVidyasagar UniversityMidnapore (E)India
  2. 2.Department of Microbiology, Panskura Banamali CollegeVidyasagar UniversityMidnapore (E)India

Personalised recommendations