Antiacetylcholinesterase activity and docking studies with chlorogenic acid, cynarin and arzanol from Helichrysum stoechas (Lamiaceae)

  • Letícia Silva
  • Ana Margarida Rodrigues
  • Marina Ciriani
  • Pedro Luis Vieira Falé
  • Vitor Teixeira
  • Paulo Madeira
  • Miguel Machuqueiro
  • Rita Pacheco
  • Maria Helena Florêncio
  • Lia Ascensão
  • Maria Luísa Marques Serralheiro
Original Research

Abstract

This work was aimed at the study of the chemical composition in phenolic compounds responsible for the high antiacetylcholinesterase activity of aqueous extracts (decoctions) from Helichrysum stoechas aerial parts. Chlorogenic acid, cynarin, and arzanol were the main components of decoctions, detected by high-performance liquid chromatography with diode-array detection and liquid chromatography-mass spectrometry/mass spectrometry. Flowers and stems/leaves extracts inhibited antiacetylcholinesterase with IC50 values of 260.7 and 654.8 μg/mL, respectively. The biological activity of these extracts was maintained after in vitro gastrointestinal digestion, indicating that the active compounds present in the extracts were not enzymatically modified by the gastrointestinal system used to simulate the digestion. Molecular docking studies with the main components were carried out in order to obtain information, at the molecular level, as to how these compounds access the enzyme’s active site. The docking study showed for the first time that chlorogenic acid, cynarin, and arzanol fit nicely in the antiacetylcholinesterase active site channel, blocking all access to the catalytic triad. This explained the high inhibitory activity determined during in vitro experiments.

Keywords

Acetylcholinesterase inhibition Docking studies Chlorogenic acid Cynarin Arzanol 

References

  1. Appendino G, Ottino M, Marquez N, Bianchi F, Giana A, Ballero M, Sterner O, Fiebich BL, Munoz E (2007) Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol r-pyrone from Helichrysum italicum ssp. microphyllum. J Nat Prod 70:608–612CrossRefPubMedGoogle Scholar
  2. Barroso MR, Barros L, Duenas M, Carvalho AM, Santios-Buelgas C, Fernandes IP, Barreiro MF, Ferreira ICFR (2014) Exploring the antioxidant potential of Helichrysum stoechas (L.) Moench phenolic compounds for cosmetic applications: chemical characterization, microencapsulation and incorporation into a moisturizer. Ind Crops Prod 53:330–336CrossRefGoogle Scholar
  3. Becke A (1998) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  4. Bourne Y, Grassi J, Bougis PE, Marchot P (1999) Conformational flexibility of the acetylcholinesterase tetramer suggested by X-ray crystallography. J Biol Chem 274:30370–30376CrossRefPubMedGoogle Scholar
  5. Carini M, Aldini G, Furlanetto S, Stefani R, Facino R (2001) LC coupled to ion-trap MS for the rapid screening and detection of polyphenol antioxidants from Helichrysum stoechas. J Pharm Biomed Anal 24:517–526CrossRefPubMedGoogle Scholar
  6. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50% inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108CrossRefPubMedGoogle Scholar
  7. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Height, structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286CrossRefPubMedGoogle Scholar
  8. Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–135CrossRefPubMedPubMedCentralGoogle Scholar
  9. Everest A, Ozturk E (2005) Focusing on the ethnobotanical uses of plants in Mersin and Adana provinces (Turkey). J Ethnobiol Ethnomed 1:1–6CrossRefGoogle Scholar
  10. Falé PL, Borges C, Madeira PJA, Ascensão L, Araújo MEM, Florêncio MH, Serralheiro MLM (2009) Rosmarinic acid, scutellarein 40-methyl ether 7-O-glucuronide and (16S)-coleon E are the main compounds responsible for the antiacetylcholinesterase and antioxidant activity in herbal tea of Plectranthus barbatus (“falso boldo”). Food Chem 114:798–805CrossRefGoogle Scholar
  11. Falé PL, Ferreira C, Rodrigues AM, Cleto P, Madeira PJA, Florêncio MH, Frazão FN, Serralheiro MLM (2013a) Antioxidant and anti-acetylcholinesterase activity of commercially available medicinal infusions after in vitro gastrointestinal digestion. J Med Plants Res 7:1370–1378CrossRefGoogle Scholar
  12. Feitosa CM, Freitas RM, Luz NNN, Bezerra MZB, Trevisan MTS (2011) Acetylcholinesterase inhibition by somes promising Brazilian medicinal plants. Braz J Biol 71:783–789CrossRefPubMedGoogle Scholar
  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  14. Galbany-Casals M, Saez L, Benedi C (2006) A taxonomic revision of Helichrysum sect. Stoechadina (Asteraceae, Gnaphalieae). Can J Bot 84:12–32CrossRefGoogle Scholar
  15. Greiner AK, Papineni RVL, Umar SA (2014) Chemoprevention in gastrointestinal physiology and disease. Natural products and microbiome. J Physiol Gastrointest Liver Physiol 307:G1–G15CrossRefGoogle Scholar
  16. Haddouchi F, Chaouche TM, Ksouri R, Medini F, Sekkal FZ, Benmansour A (2014) Antioxidant activity profiling by spectrophotometric methods of aqueous methanolic extracts of Helichrysum stoechas subsp. rupestre and Phagnalon saxatile subsp. saxatile. Chin J Nat Med 12:0415–0422Google Scholar
  17. Harris R, Olson AJ, Goodsell DS (2008) Automated prediction of ligand-binding sites in proteins. Proteins 70:1506–1517CrossRefPubMedGoogle Scholar
  18. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901CrossRefPubMedGoogle Scholar
  19. Hernandez MF, Falé PLV, Araújo MEM, Serralheiro MLM (2010) Acetylcholinesterase inhibition and antioxidant activity of the water extracts of several Hypericum species. Food Chem 120:1076–1082CrossRefGoogle Scholar
  20. Ho BK, Gruswitz F (2008) Hollow: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol 8:49–55CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ingkaninan K, Temkitthawon P, Chuenchon K, Yuyaem T, Thongnoi W (2003) Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J Ethnopharmacol 89:261–264CrossRefPubMedGoogle Scholar
  22. Jaiswal R, Kiprotich J, Kuhnert N (2011) Determination of the hydrocinnamate profile of 12 members of the Asteraceae family. Phytochemistry 72:781–790CrossRefPubMedGoogle Scholar
  23. Jarvie E, Cellek S, Sanger G (2008) Potentiation by cholinesterase inhibitors of cholinergic activity in rat isolated stomach and colon. Pharmacol Res 58:297–301CrossRefPubMedGoogle Scholar
  24. Kryger G, Harel M, Giles K, Toker L, Velan B, Lazar A, Kronman C, Barak D, Ariel N, Shafferman A, Silman I, Sussman JL (2000) Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr Sect D 56:1385–1394CrossRefGoogle Scholar
  25. Lafay S, Gil-Izquierdo A, Manach C, Morand C, Besson C, Scalbert A (2006) Chlorogenic acid is absorbed in its intact form in stomach of rats. J Nutr 136:1192–1197PubMedGoogle Scholar
  26. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B37:785–789CrossRefGoogle Scholar
  27. Lison L (1968) Statistique appliqué à la Biologie Experimentel. Gauthier-Villars, Paris, p 65–74Google Scholar
  28. Manach C, Scalbert A, Morand C, Remesy C, Jimenes L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747PubMedGoogle Scholar
  29. Mari A, Napolitano A, Masullo M, Pizza C, Piacente S (2014) Identification and quantitative determination of the polar constituents in Helichrysum italicum flowers and derived food supplements. J Pharm Biomed Anal 96:249–255CrossRefPubMedGoogle Scholar
  30. Mehler E, Solmajer T (1991) Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng 4:903–910CrossRefPubMedGoogle Scholar
  31. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nagahama K, Matsunaga Y, Kawachi M, Ito K, Tanaka T, Hori Y, Oka H, Takei M (2012) Acotiamide, a new orally active acetylcholinesterase inhibitor, stimulates gastrointestinal motor activity in conscious dogs. Neurogastroenterol Motil 24:566–574CrossRefPubMedGoogle Scholar
  33. Porfirio S, Falé PL, Madeira PJA, Florêncio MH, Ascensão L, Serralheiro MLM (2010) Antiacetylcholinesterase and antioxidant activities of Plectranthus barbatus tea, after in vitro gastrointestinal metabolism. Food Chem 122:179–187CrossRefGoogle Scholar
  34. Racchi M, Mazzucchelli M, Porrello E, Lanni C, Govoni S (2004) Acetylcholinesterase inhibitors: novel activities of old molecules. Pharmacol Res 50:441–451CrossRefPubMedGoogle Scholar
  35. Roseiro LB, Rauter AP, Serralheiro MLM (2012) Polyphenols as acetylcholinesterase inhibitors: structural specificity and impact on human disease. Nutr Aging 1:99–111Google Scholar
  36. Šebestík J, Marques SM, Falé PL, Santos S, Arduíno DM, Cardoso SM, Oliveira CR, Serralheiro MLM, Santos MA (2011) Bifunctional phenolic-choline conjugates as antioxidants and acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 26:485–497CrossRefPubMedGoogle Scholar
  37. Shafferman A, Kronman C, Flashner Y, Leitner M, Grosfeld H, Ordentlich A, Gazes Y, Cohen S, Ariel N, Barak D, Harel M, Silman I, Sussman JL, Vela B (1992) Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem 267:17640–17648PubMedGoogle Scholar
  38. Sivaraman D, Panneerselvam P, Muralidharan P (2014) Isolation, characterization and insilico pharmacological screening of medicinally important bio-active phytoconstituents from the leaves of Ipomoea aquatica Forsk. Int J Pharm Pharm Sci 6:262–267Google Scholar
  39. Solis FJ, Wets RJ-B (1981) Minimization by random search techniques. Math Oper Res 6:19–30CrossRefGoogle Scholar
  40. Spencer JPE (2003) Metabolism of tea flavonoids in the gastrointestinal tract. J Nutr 133:3255S–3261SPubMedGoogle Scholar
  41. Tripathi A, Srivastava UC (2008) Acetylcholinesterase: a versatile enzyme of nervous system. Ann Neurosci 15:106–111CrossRefGoogle Scholar
  42. Viegas DA, Palmeira-de-Oliveira A, Salgueiro L, Martinez-de-Oliveira J, Palmeira-de-Oliveira R (2014) Helichrysum italicum: from traditional use to scientific data. J Ethnopharmacol 15:54–65CrossRefGoogle Scholar
  43. Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza AD, Brantner AH (2014) Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 19:767–782CrossRefPubMedGoogle Scholar
  44. Zhang L, Song Y, Lu C, Zhang J, Yuan J, Wang T, Fu F (2013) The effects of huperzine A on gastrointestinal acetylcholinesterase activity and motility after single and multiple dosing in mice. Exp Ther Med 5:793–796PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Letícia Silva
    • 1
  • Ana Margarida Rodrigues
    • 1
  • Marina Ciriani
    • 2
  • Pedro Luis Vieira Falé
    • 3
  • Vitor Teixeira
    • 3
  • Paulo Madeira
    • 3
  • Miguel Machuqueiro
    • 3
  • Rita Pacheco
    • 2
    • 3
  • Maria Helena Florêncio
    • 3
    • 4
  • Lia Ascensão
    • 1
  • Maria Luísa Marques Serralheiro
    • 3
    • 4
  1. 1.Centro de Estudos do Ambiente e do Mar, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  2. 2.Área Departamental de Engenharia QuímicaInstituto Superior de Engenharia de LisboaLisboaPortugal
  3. 3.Centro de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  4. 4.Departamento de Química e Bioquímica. Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations