Medicinal Chemistry Research

, Volume 26, Issue 11, pp 2929–2941 | Cite as

Imatinib derivatives as inhibitors of K562 cells in chronic myeloid leukemia

  • Liviane D. Azevedo
  • Mônica M. Bastos
  • Flávia C. Vasconcelos
  • Lucas V. B. Hoelz
  • Floriano P. S. Junior
  • Rafael F. Dantas
  • Ana C. M. de Almeida
  • Andressa Paula de Oliveira
  • Larissa C. Gomes
  • Raquel C. Maia
  • Nubia BoechatEmail author
Original Research


Imatinib was the first representative of the class of Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog (BCR-ABL) tyrosine kinase inhibitors used for the treatment of chronic myeloid leukemia. Second-generation and third-generation drugs have been introduced in this therapy, affording increased patient survival. However, all BCR-ABL tyrosine kinase inhibitors have been shown to induce resistance, necessitating a search for new therapeutic options. The sunitinib, another tyrosine kinase inhibitor used in the treatment of renal cell carcinoma and gastrointestinal stromal tumors is an isatin derivative. Isatin nucleus is highly versatile for the preparation of new substances, and several tyrosine kinase inhibitors examples have been obtained using it. This work aimed to design, synthesize, and biological evaluation of new compounds using the K562 cell line, which constitutively expresses the active BCR-ABL enzyme. Three new series of imatinib derivatives have been planned from the imatinib, and all have a phenylaminopyrimidine group as the main pharmacophore. Sunitinib was used as a structural prototype to planning the series 1 (8ae) of hybrids between sunitinib and imatinib. Series 2 and 3 are 2-oxo-2-phenyacetamide and 2,2-difluoro-2-phenylacetamide derivatives, respectively. Isatins were used as the starting materials for all series. Compounds were synthesized using simple methodologies and were obtained in high purities. The compounds were tested against K562 cells, and four showed a reduction in cell viability, with EC50 values ranging from 0.37 to 2.02 μM, some of which are close to the imatinib standard (0.21 µM).


Tyrosine kinase inhibitors Imatinib Sunitinib Isatin Phenylacetamide 



We are grateful to Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq) and Foundation for Research Support of the State of Rio de Janeiro (FAPERJ) for funding this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_1993_MOESM1_ESM.doc (56 kb)
Supplementary Information


  1. Aboul-Fadl T, Radwan A, Attia MI, Al-Dhfyan A, Abdel-Aziz H (2012) Schiff bases of indoline-2,3-dione (isatin) with potential antiproliferative activity. Chem Cent J 6:49. doi: 10.1186/1752-153X-6-49 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abraham SA, Hopcroft LEM, Carrick E, Drotar ME, Dunn K, Williamson AJK, Korfi K, Baquero P, Park LE, Scott MT, Pellicano F, Pierce A, Copland M, Nourse C, Grimmond SM, Vetrie D, Whetton AD, Holyoake TL (2016) Dual targeting of p53 and c-MYC selectively eliminates leukemic stem cells. Nature 534:341–346. doi: 10.1038/nature18288 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ali MAM (2016) Chronic myeloid leukemia in the era of tyrosine kinase inhibitors: an evolving paradigm of molecularly targeted therapy. Mol Diagn Ther 20:315–333. doi: 10.1007/s40291-016-0208-1 CrossRefPubMedGoogle Scholar
  4. Asaki T, Sugiyama Y, Hamamoto T, Higashioka M, Umehara M, Naito H, Niwa T (2006) Design and synthesis of 3-substituted benzamide derivatives as Bcr-Abl kinase inhibitors. Bioorg Med Chem 16:1421–1425. doi:10.1016/j.bmcl.2005.11.042CrossRefGoogle Scholar
  5. Aslam NA, Babu SA, Rani S, Mahajan S, Solanki J, Yasuda M, Baba A (2015) Diastereoselective construction of 3-aminooxindoles with adjacent stereocenters: stereocontrolled addition of γ-Substituted allylindiums to isatin ketimines. Eur J Org Chem 2015:4168–4189. doi: 10.1002/ejoc.201500340 CrossRefGoogle Scholar
  6. Azevedo LD, Bastos MM, Oliveira AP, Boechat N (2017) Sínteses e propriedades de fármacos inibidores da tirosina quinase BCR-ABL, utilizados no tratamento da leucemia mieloide crônica. Química Nova. doi: 10.21577/0100-4042.20170027 (In press)
  7. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, Cervantes F, Clark RE, Cortes JE, Guilhot F, Hjorth-Hansen H, Hughes TP, Kantarjian HM, Kim DW, Larson RA, Lipton JH, Mahon FX, Martinelli G, Mayer J, Muller MC, Niederwieser D, Pane F, Radich JP, Rousselot P, Saglio G, Saubele S, Schiffer C, Silver R, Simonsson B, Steegmann JL, Goldman JM, Hehlmann R (2013) European leukemia net recommendations for the management of chronic myeloid leukemia: 2013. Blood 122:872–884. doi: 10.1182/blood-2013-05-501569 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bennett JH (1845) Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edin Med Surg J 64:413–423Google Scholar
  9. Boechat N, Kover WB, Bastos MM, Pinto AC, Maciel LC, Mayer LMU, Silva FSQ, SÁ PM, Mendonça JS, Wardell SMSV, Arruda MSL (2008) N-Acyl-3,3-difluoro-2-oxoindoles as versatile intermediates for the preparation of different 2,2-difluorophenylacetic derivatives. Journal of the Brazilian Chemical Society 19:445–457CrossRefGoogle Scholar
  10. Boechat N, Bastos MM, Duarte SL, Costa JCS, Mafra JCM, Daniel LCC (2013) Mesilato de imatinibe: uma otimização em sua síntese imatinib mesylate: an optimization in its synthesis. Rev Virtual Quim 5:222–234. doi: 10.5935/1984-6835.20130023 CrossRefGoogle Scholar
  11. Boechat N, Kover WB, Bastos MM, Romeiro NC, Silva ASC, Santos FC, Valverde AL, Azevedo MLG, Wollinger W, Souza TML, Souza SLO, Frugulhetti ICPP (2007) Design, synthesis, and biological evaluation of new 3-hydroxy-2-oxo-3-trifluoromethylindole as potential HIV-1 reverse transcriptase inhibitors. Med Chem Res 15:492–510. doi: 10.1007/s00044-007-9004-0 CrossRefGoogle Scholar
  12. Boechat N, Pinto AC (2000) Gem-difluoro derivative of phenylacetamide and phenylacetic acid and their pharmaceutical uses. US6034266 (A) filled 17 Sept 1996, issued 7 Mar 2000Google Scholar
  13. Cheah WC, Black DS, Goh WK, Kumar N (2008) Synthesis of anti-bacterial peptidomimetics derived from N-acylisatins. Tetrahedron Lett 18:2965–2968. doi: 10.1016/j.tetlet.2008.03.007 CrossRefGoogle Scholar
  14. Choi HG, Sim T, Gray N, Zhou W, Chang JW, Zhang J, Weisberg E (2010) Fused heterocyclic compounds and their uses. WO2010144909 (A1) filled 14 Jun 2010, issued 16 Dec 2010Google Scholar
  15. Cortes J, O’Brien S, Kantarjian H (2004) Discontinuation of imatinib therapy after achieving a molecular response. Blood 104:2204–2205. doi: 10.1182/blood-2004-04-1335 CrossRefPubMedGoogle Scholar
  16. Degos L (2001) John hughes bennett, rudolph virchow… and alfred donné: the first description of leukemia. Hematol J 2:1. doi: 10.1038/sj/thj/6200090 CrossRefPubMedGoogle Scholar
  17. Druker BJ, Lydon NB (2000) Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 105:3–7. doi: 10.1172/JCI9083 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 14:1038–1042. doi: 10.1056/NEJM200104053441402 CrossRefGoogle Scholar
  19. Eck MJ, Manley PW (2009) The interplay of structural information and functional studies in kinase drug design: insights from BCR-Abl. Curr Opin Cell Biol 21:288–295. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  20. Feng Z, Chen X, Liu H, Meng C (2013) Amine pyrimidine derivates, and production method thereof, and medicament composition and use. CN101423513 B filled 29 Oct 2007, issued 27 Mar 2013Google Scholar
  21. Geary CG (2000) The story of chronic myeloid leukemia. Br J Haematol 110:2–11. doi: 10.1046/j.1365-2141.2000.02137.x CrossRefPubMedGoogle Scholar
  22. Ibrahim HS, Abou-Seri SM, Abdel-Aziz HA (2016) 3-Hydrazinoindolin-2-one derivatives: chemical classification and investigation of their targets as anticancer agents. Eur J Med Chem 122:366–381. doi: 10.1016/j.ejmech.2016.06.034 CrossRefPubMedGoogle Scholar
  23. Ikotun AA, Adelani PO, Egharevba GO (2012) 1-Benzyl-3-[(4-methylphenyl)imino]indolin-2-one. Acta Crystallogr Sect E 68:o2098. doi:10.1107/S1600536812024506CrossRefGoogle Scholar
  24. Iqbal N, Iqbal N (2014) Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pr 2014:357027. doi: 10.1155/2014/357027 CrossRefGoogle Scholar
  25. Jabbour E, Cortes JE, Giles FJ, O’Brien S, Kantarjian HM (2007) Current and emerging treatment options in chronic myeloid leukemia. Cancer 109:2171–2181. doi: 10.1002/cncr.22661 CrossRefPubMedGoogle Scholar
  26. Jabbour E, Deininger M, Hochhaus A (2010) Spotlight review management of adverse events associated with tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia. Leukemia 25:201–210. doi: 10.1038/leu.2010.215 CrossRefPubMedGoogle Scholar
  27. Jabbour E, Kantarjian H (2016) Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol 91:252–265. doi: 10.1002/ajh.24275 CrossRefPubMedGoogle Scholar
  28. James RA, Kohn CA, Rees AH, Verschuren RE (1989) Some derivatives of benz[f]azepine. Part III. J Heterocycl Chem 26:793–795. doi: 10.1002/jhet.5570260353 CrossRefGoogle Scholar
  29. Jeankumar VU, Alokam R, Sridevi JP, Suryadevara P, Matikonda SS, Peddi S, Alvala SSM, Yogeeswari P, Sriram D (2014) Discovery and structure optimization of a series of isatin derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors. Chem Biol Drug Des 83:498–506. doi: 10.1111/cbdd.12265 CrossRefPubMedGoogle Scholar
  30. Joske DJL (2008) Chronic myeloid leukemia: The evolution of gene-targeted therapy. Med J Aust 189:277–282PubMedGoogle Scholar
  31. Liu X, Kung A, Malinoski B, Prakash GKS, Zhang C (2015) Development of alkyne-containing pyrazolopyrimidines to overcome drug resistance of Bcr-Abl Kinase. J Med Chem 58:9228–9237. doi: 10.1021/acs.jmedchem.5b01125 CrossRefPubMedGoogle Scholar
  32. Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079–1082. doi: 10.1126/science.2408149 CrossRefPubMedGoogle Scholar
  33. Majid SJ, Ahmad RM (2015) Chronic myeloid leukemia manifesting on palate: a rare case report with a brief review of literature. Int J Curr Res 7:13996–13999Google Scholar
  34. Manley PW, Cowan-Jacob SW, Buchdunger E, Fabbro D, Fendrich G, Furet P, Meyer T, Zimmermann J (2002) Imatinib: a selective tyrosine kinase inhibitor. Eur J Cancer 38:S19–S27. doi: 10.1016/S0959-8049(02)80599-8 CrossRefPubMedGoogle Scholar
  35. Moreno BH, Garralda EC, Hitt R (2010) Tyrosine kinase inhibitors in treating soft tissue sarcomas: sunitinib in non-GIST sarcomas. Clin Transl Oncol 12:468–472. doi: 10.1007/s12094-010-0539-z CrossRefGoogle Scholar
  36. Mughal A, Aslam HM, Khan AMH, Saleem S, Umah R, Saleem M (2013) Bcr-Abl tyrosine kinase inhibitors- current status. Infect Agent Cancer 8:23. doi: 10.1186/1750-9378-8-23 CrossRefPubMedPubMedCentralGoogle Scholar
  37. NCCN Clinical Practice Guidelines in Oncology. Chronic Myelogenous Leukemia (2017) 105. Accessed 1 Jan 2017
  38. Neves BJ, Dantas RF, Senger MR, Melo-Filho CC, Valente WC, de Almeida AC, Rezende-Neto JM, Lima EF, Paveley R, Furnham N, Muratov E, Kamentsky L, Carpenter AE, Braga RC, Silva-Junior FP, Andrade CH (2016) Discovery of new anti-schistosomal hits by integration of qsar-based virtual screening and high content screening. J Med Chem 15:7075–7088. doi: 10.1021/acs.jmedchem.5b02038 CrossRefGoogle Scholar
  39. Nowell PC, Hungerford DA (1961) Chromosome studies in human leukemia. II. Chronic granulocytic leukemia. J Natl Cancer Inst 27:1013–1035. doi: 10.1093/jnci/27.5.1013 CrossRefPubMedGoogle Scholar
  40. Obafemi CA, Taiwo FO, Iwalewa EO, Akinpelu DA (2012) Synthesis, antibacterial and anti-inflammatory activities of some 2-phenylglyoxylic acid derivatives. Int J Life Sci Pharma Res 2:22–36Google Scholar
  41. Popp FD, Piccirilli RM (1971) The reaction of N-acetylisatin with amines. J Heterocycl Chem 8:473–475. doi: 10.1002/jhet.5570080319 CrossRefGoogle Scholar
  42. Rafiyath S, Wei G, Liu D (2013) Targeting BCR-ABL for molecular therapy of chronic myelogenous leukemia. Handb Ther Biomark Cancer 233–265. doi: 10.1201/b15029-9 CrossRefGoogle Scholar
  43. Rane R, Karunanidhi S, Jain K, Shaikh M, Hampannavar G, Karpoormath R (2016) A recent perspective on discovery and development of diverse therapeutic agents inspired from isatin alkaloids. Curr Top Med Chem 16:1262–1289. doi: 10.2174/1568026615666150915112334 CrossRefPubMedGoogle Scholar
  44. Rewcastle G, Denny W, Showalter HH (2000) Synthesis of 4-(phenylamino)pyrimidine derivatives as ATP-competitive protein kinase inhibitors with potential for cancer chemotherapy. Curr Org Chem 4:679–706. doi: 10.2174/1385272003376094 CrossRefGoogle Scholar
  45. Rosti G, Castagnetti F, Gugliotta G, Palandri F, Baccarani M (2012) Physician’s guide to the clinical management of adverse events on nilotinib therapy for the treatment of CML. Cancer Treat Rev 38:241–248. doi: 10.1016/j.ctrv.2011.07.004 CrossRefPubMedGoogle Scholar
  46. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293. doi: 10.1038/243290a0 CrossRefPubMedGoogle Scholar
  47. Sabet R, Mohammadpour M, Sadeghi A, Fassihi (2010) QSAR study of isatin analogs as in vitro anti-cancer agents. Eur J Med Chem 45:1113–1118. doi: 10.1016/j.ejmech.2009.12.010 CrossRefPubMedGoogle Scholar
  48. Silva JFM, Garden SJ, Pinto AC (2001) The chemistry of Isatins: a review from 1975 to 1999. J Braz Chem Soc 12:273–324. doi: 10.1590/S0103-50532001000300002 CrossRefGoogle Scholar
  49. Subari AA, Bouhfid R, Zouihri H, Essassi EM (2010) 3-(Phenyl-imino)indolin-2-one. Acta Crystallographica. Acta Crystallogr Sect E 66:o453. doi: 10.1107/S160053681000259X CrossRefGoogle Scholar
  50. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB, Traxler P (1996a) Phenylamino-pyrimidine (PAP)—derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorg Med Chem Lett 6:1221–1226. doi: 10.1016/0960-894X(96)00197-7 CrossRefGoogle Scholar
  51. Zimmermann J, Caravatti G, Mett H, Meyer T, Müller M, Lydon NB, Fabbro D (1996b) Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and selective inhibitors of protein kinase C (PKC). Arch Pharm 7:371–376CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Liviane D. Azevedo
    • 1
    • 2
  • Mônica M. Bastos
    • 1
    • 2
  • Flávia C. Vasconcelos
    • 3
  • Lucas V. B. Hoelz
    • 1
  • Floriano P. S. Junior
    • 4
  • Rafael F. Dantas
    • 4
  • Ana C. M. de Almeida
    • 4
  • Andressa Paula de Oliveira
    • 1
    • 2
  • Larissa C. Gomes
    • 1
    • 5
  • Raquel C. Maia
    • 3
  • Nubia Boechat
    • 1
    • 2
    Email author
  1. 1.Departamento de Síntese de Fármacos, Fundação Oswaldo CruzInstituto de Tecnologia em Fármacos, Farmanguinhos - FiocruzRio de JaneiroBrazil
  2. 2.Programa de Pós-Graduação em Farmacologia e Química Medicinal – ICB-UFRJ, CCSBloco J, Ilha do FundãoRio de JaneiroBrazil
  3. 3.Laboratório de Hemato-Oncologia Celular e Molecular, Instituto Nacional do Câncer, INCAHospital do Câncer I, Praça da Cruz Vermelha, CentroRio de JaneiroBrazil
  4. 4.Laboratório de Bioquímica Experimental e Computacional de FármacosFundação Oswaldo Cruz, Instituto Oswaldo CruzRio de JaneiroBrazil
  5. 5.PROBIN - Abeu - Centro Universitário UNIABEUBelford RoxoBrazil

Personalised recommendations