Advertisement

Medicinal Chemistry Research

, Volume 26, Issue 11, pp 2785–2808 | Cite as

Design, synthesis, estrogenic and antiestrogenic activities of some triarylpyrazole derivatives

  • Mahmoud A. Ragab
  • Heba A. Abd El Razik
  • Elham A. Afify
  • Khadiga A. Ismail
  • Mounir A. Khalil
  • Nargues S. Habib
Original Research
  • 166 Downloads

Abstract

New triarylpyrazole derivatives, substituted with basic side chain, polar group or heterocyclic ring were designed and synthesized. Nineteen compounds were tested for their in vivo uterotrophic activity. Animals treated with compounds 9, 15a, 15c, 19a, 19f, 20a, and 21b showed pronounced increase in uterine weight. It is worth mentioning that compound 19f was more active than estradiol as an estrogenic compound as evidenced by the increased dry uterine weight. Additionally, compound 19a produced 128.25% increase in dry uterine weight relative to estradiol. On the other hand, eight compounds were screened for their in vivo antiuterotrophic activity. Animals treated with compounds 5e, 5f, 8, and 13b showed pronounced decrease in uterine weight. The highest antiuterotrophic effect was observed in mice receiving compound 13b, which was as potent as the positive control, tamoxifen as evident by the decrease in the uterine wet weight.

Keywords

Synthesis Pyrazoles Uterotrophic activity Antiuterotrophic activity 

Notes

Acknowledgements

The authors are thankful to N.M. Andijani for her assistance in in vivo experiments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_1977_MOESM1_ESM.docx (5.6 mb)
Supplementary Information

References

  1. Angerer Ev, Knebel N, Kager M, Ganss B (1990) 1-(Aminoalkyl)-2-phenylindoles as novel pure estrogen antagonists. J Med Chem 33:2635–2640CrossRefGoogle Scholar
  2. Awazu Y, Mizutani A, Nagase Y, Tsuchiya S, Nakamura K, Kakoi Y, Kitahara O, Takeuchi T, Yamasaki S, Miyamoto N, Iwata H, Miki H, Imamura S, Hori A (2013) Anti-angiogenic and anti-tumor effects of TAK-593, a potent and selective inhibitor of vascular endothelial growth factor and platelet-derived growth factor receptor tyrosine kinase. Cancer Sci 104:486–494CrossRefPubMedGoogle Scholar
  3. Bai Z, Gust R (2009) Review: breast cancer, estrogen receptor and ligands. Arch Pharm (Weinheim) 342:133–149CrossRefGoogle Scholar
  4. Bayrack H, Demirbas A, Karaoglu SA, Demirbas N (2009) Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur J Med Chem 44:1057–1066CrossRefGoogle Scholar
  5. El-Deeb IM, Lee SH (2010) Design and synthesis of new potent anticancer pyrazoles with high FLT3 kinase inhibitory selectivity. Bioorg Med Chem 18:3961–3973CrossRefPubMedGoogle Scholar
  6. El-Tombary AA, Ismail KA, AboulWafa OM, Omar AMME, El-Reyini SH (1995) Synthesis of novel estradiol thiosemicarbazone derivatives as potential antiestrogens. Alex J Pharm Sci 9:147–152Google Scholar
  7. Fink BE, Mortensen DS, Stauffer SR, Aron ZD, Katzenellenbogen JA (1999) Novel structural templates for estrogen-receptor ligands and prospects for combinatorial synthesis of estrogens. Chem Biol 6:205–219CrossRefPubMedGoogle Scholar
  8. Garcia-Segura LM, Azcoitia I, DonCarlos LL (2001) Neuroprotection by estradiol. Prog Neurobiol 63:29–60CrossRefPubMedGoogle Scholar
  9. Ghosh U, Ganessunker D, Sattigeri VJ, Carlson KE, Mortensen DJ, Katzenellenbogen BS, Katzenellenbogen JA (2003) Estrogenic diazenes: heterocyclic non-steroidal estrogens of unusual structure with selectivity for estrogen receptor subtypes. Bioorg Med Chem 11:629–657CrossRefPubMedGoogle Scholar
  10. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M, Gustafsson JÅ (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87:905–931CrossRefPubMedGoogle Scholar
  11. Ismail KA, Abd El Aziem T (2001) Synthesis and biological evaluation of some novel 4H-benzopyran-4-one derivatives as nonsteroidal antiestrogens. Eur J Med Chem 36:243–253CrossRefPubMedGoogle Scholar
  12. Ismail KA, El-Tombary AA, AboulWafa OM, Omar A-MME, El Rewini SH (1996) Novel steroidal 1,4-diketones and pyridazine derivatives as potential antiestrogens. Arch Pharm Pharm Med Chem 329:433–437CrossRefGoogle Scholar
  13. Jain N, Xu J, Kanojia RM, Du F, Jian-Zhong G, Pacia E, Lai MT, Musto A, Allan G, Reuman M, Li X, Hahn D, Cousineau M, Peng S, Ritchie D, Russell R, Lundeen S, Sui Z (2009) Identification and structure-activity relationships of chromene-derived selective estrogen receptor modulators for treatment of postmenopausal symptoms. J Med Chem 52:7544–7569CrossRefPubMedGoogle Scholar
  14. Kamal A, Shaik AB, Jain N, Kishor C, Nagabhushana A, Supriya B, Kumar GB, Chourasiya SS, Suresh Y, Mishra RK, Addlagatta A (2015) Design and synthesis of pyrazoleeoxindole conjugates targeting tubulin polymerization as new anticancer agents. Eur J Med Chem 92:501–513CrossRefPubMedGoogle Scholar
  15. Kankanala J, Latham AM, Johnson AP, Homer-Vanniasinkam S, Fishwick CWG, Ponnambalam S (2012) A combinatorial in silico and cellular approach to identify a new class of compounds that target VEGFR2 receptor tyrosine kinase activity and angiogenesis. Br J Pharmacol 166:737–748CrossRefPubMedPubMedCentralGoogle Scholar
  16. Katzenellenbogen BS, Katzenellenbogen Ja (2000) Estrogen receptor transcription and transactivation Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res 2:335–344CrossRefPubMedGoogle Scholar
  17. Katzenellenbogen BS, Miller MA, Eckert RL, Sudo K (1983) Antiestrogen pharmacology and mechanism of action. J Steroid Biochem 19:59–68CrossRefPubMedGoogle Scholar
  18. Kumar A, Pakrasi P (1995) Estrogenic and antiestrogenic properties of clomiphene citrate in laboratory mice. J Biosci 20:665–673CrossRefGoogle Scholar
  19. Kumar H, Saini D, Jain S, Jain N (2013) Pyrazole scaffold: a remarkable tool in the development of anticancer. Eur J Med Chem 70:248–258CrossRefPubMedGoogle Scholar
  20. Magarian RA, Overacre LB, Singh S, Meyer KL (1994) The medicinal chemistry of nonsteroidal antiestrogens: a review. Curr Med Chem 1:61–104Google Scholar
  21. May M (1971) In: Turner R, Hebborn P (eds) Estrogenic and antiestrogenic agents in screening methods in pharmacology, vol 2, Ch. 6. Academic, New York, NY and London, 85–100Google Scholar
  22. McDonnell DP, Wardell SE (2010) The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Curr Opin Pharmacol 10:620–628CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mendelsohn ME, Karas RH (2005) Molecular and cellular basis of cardiovascular gender differences. Science 308:1583–1587CrossRefPubMedGoogle Scholar
  24. Minutolo F, Macchia M, Katzenellenbogen BS, Katzenellenbogen JA (2011) Estrogen receptor β ligands: recent advances and biomedical applications. Med Res Rev 31:364–442CrossRefPubMedGoogle Scholar
  25. Mohareb RM, Abdallah AEM, Abdelaziz MA (2014) New approaches for the synthesis of pyrazole, thiophene, thieno[2,3-b]-pyridine, and thiazole derivatives together with their anti-tumor evaluations. Med Chem Res 23:564–579CrossRefGoogle Scholar
  26. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339:1609–1618CrossRefPubMedGoogle Scholar
  27. Osipo C, Liu H, Meeke K, Jordan VC (2004) The consequences of exhaustive antiestrogen therapy in breast cancer: estrogen-induced tumor cell death. Exp Biol Med 229:722–731CrossRefGoogle Scholar
  28. Padilla-Banks E, Jefferson WN, Newbold RR (2001) The immature mouse is a suitable model for detection of estrogenicity in the uterotropic bioassay. Environ Health Perspect 109:821–826CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pirol ŞC, Çaliışkan B, Durmaz I, Atalay R, Banoglu E (2014) Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3-carboxylic acid amides with potent antiproliferative activity on human cancer cell lines. Eur J Med Chem 87:140–149CrossRefGoogle Scholar
  30. Saripinar E, Guzel Y, Onal Z, Ilhan IO, Akcamur Y (2000) 4-(-4-methoxybenzoyl)-5-(-4-methoxyphenyl)-2,3-dihydro-2,3-furandione, it’s synthesis, thermolysis and Diels-Alder reactions with Schiff bases: Experimental data and calculations. J Chem Soc Pak 22:308–317Google Scholar
  31. Shi JB, Tang WJ, Bao qi X, Li J, Li R, Liu XH (2015) Novel pyrazole-5-carboxamide and pyrazolepyrimidine derivatives: synthesis and anticancer activity. Eur J Med Chem 90:889–896CrossRefPubMedGoogle Scholar
  32. Stauffer SR, Coletta CJ, Tedesco R, Nishiguchi G, Carlson K, Sun J, Katzenellenbogen BS, Katzenellenbogen JA (2000) Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-α-selective agonists. J Med Chem 43:4934–4947CrossRefPubMedGoogle Scholar
  33. Stauffer SR, Katzenellenbogen JA (2000) Solid-Phase synthesis of tetrasubstituted pyrazoles, novel ligands for the estrogen receptor. J Comb Chem 2:318–329CrossRefPubMedGoogle Scholar
  34. Sun J, Huang YR, Harrington WR, Sheng S, Katzenellenbogen JA, Katzenellenbogen BS (2002) Antagonists selective for estrogen receptor alpha. Endocrinology 143:941–947CrossRefPubMedGoogle Scholar
  35. Sun J, Lv X-H, Qiu H-Y, Wang Y-T, Du Q-R, Li D-D, Yang Y-H, Zhu H-L (2013) Synthesis, biological evaluation and molecular docking studies of pyrazole derivatives coupling with a thiourea moiety as novel CDKs inhibitors. Eur J Med Chem 68:1–9CrossRefPubMedGoogle Scholar
  36. Thomas C, Gustafsson J-Å (2011) The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 11:597–608CrossRefPubMedGoogle Scholar
  37. Vijaykumar D, Al-Qahtani MH, Welch MJ, Katzenellenbogen JA (2003) Synthesis and biological evaluation of a fluorine-18 labeled estrogen receptor-alpha selective ligand: [18F] propyl pyrazole triol. Nucl Med Bio 30:397–404CrossRefGoogle Scholar
  38. Wang KJ, Shi DQ, Sun LS, Jiang X, Lü YY, Dai J, Chen DY, Xu ZH, Jiang Q (2012) Association of estrogen receptor alpha gene polymorphisms with bone mineral density: a meta-analysis. Chin Med J 125:2589–2597PubMedGoogle Scholar
  39. Xing M, Zhao T-T, Ren Y-J, Peng N-N, Yang X-H, Li X, Zhang H, Liu G-Q, Zhang L-R, Zhu H-L (2014) Synthesis, biological evaluation, and molecular docking studies of pyrazolyl-acylhydrazone derivatives as novel anticancer agents. Med Chem Res 23:3274–3286CrossRefGoogle Scholar
  40. Zheng Y, Zheng M, Ling X, Liu Y, Xue Y, An L, Gu N, Ji M (2013) Design, synthesis, quantum chemical studies and biological activity evaluation of pyrazole-benzimidazole derivatives as potent Aurora A/B kinase inhibitors. Bioorg Med Chem Lett 23:3523–3530CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyDamanhour UniversityDamanhourEgypt
  2. 2.Department of Pharmaceutical Chemistry, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt
  3. 3.Department of Pharmacology, Faculty of PharmacyKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Pharmacology, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt

Personalised recommendations