Advertisement

Medicinal Chemistry Research

, Volume 26, Issue 11, pp 2727–2736 | Cite as

Involvement of reactive oxygen species in the oleoylethanolamide effects and its pyrazonilic analogue in melanoma cells

  • Priscila Antiqueira-Santos
  • Daiane S. dos Santos
  • Carolina R. L. Hack
  • Alex Fabiani C. Flores
  • Marcelo G. Montes D’Oca
  • Luciana A. Piovesan
  • Luiz Eduardo M. Nery
  • Ana Paula S. Votto
Original Research
  • 183 Downloads

Abstract

The search for more substances that effectively fight melanoma is extremely important, because of its aggressive nature. In this sense, the molecular hybridization is a promising strategy. The aim of this work is to evaluate whether the antiproliferative effect of the endocannabinoid oleoylethanolamide can be improved with the addition of a trifluoromethylated pyrazolinic nucleus on its structure in B16F10 cell line. The pyrazolinic analog was named oleoyl pyrazoline. We also compared the effects of oleoylethanolamide and that of the classic endocannabinoid anandamide (AEA). The cell viability was evaluated by MTT assay, the intracellular reactive oxygen species generation by fluorimetry, and apoptosis/necrosis by fluorescent microscopy. Also, α-tocopherol antioxidant was used to evaluate the involvement of reactive oxygen species in the cellular response. Although the effects of AEA occur in smaller concentrations, the results show that the effects of AEA and oleoylethanolamide were similar. The results showed a decrease in cell viability, induction of apoptosis and necrosis, and increased generation of reactive oxygen species by the oleoylethanolamide, while the oleoyl pyrazoline increased cell proliferation and decreased reactive oxygen species. Additionally, the effects of oleoylethanolamide in cell viability were decreased by inhibiting the generation of reactive oxygen species by α-tocopherol. Therefore, it is possible to suggest the involvement of reactive oxygen species in the effect of oleoylethanolamide in the B16F10 cells. Considering the great need to find substances that can fight melanoma and the lack of greater elucidation in the action mechanisms of cannabinoids and their analogs, this work provides important new information that could serve as reference to other studies.

Keywords

Cell viability Apoptosis B16F10 cell line Oleoylpyrazoline Oxidative stress 

Notes

Acknowledgements

This work was supported by the Programa de Pós-Graduação em Ciências Fisiológicas (FURG). P.A.S. received a graduate fellowship from Brazilian CAPES. We are thankful to Anahy Fazio, Milene Medeiros and Fernanda Lopes for help on the work, and for financial support from Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS/PRONEM) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_1971_MOESM1_ESM.docx (525 kb)
Supplementary Information

References

  1. Adinolfi B, Romanini A, Vanni A, Martinotti E, Chicca A, Fogli S, Nieri P (2013) Anticancer activity of anandamide in human cutaneous melanoma cells. Eur J Pharmacol 718:154–159CrossRefPubMedGoogle Scholar
  2. Ambrosini A, Zolese G, Ambrosi S, Ragni L, Littarru G, Bertoli E, Mantero F, Boscaro M, Balercia G (2006) Oleoylethanolamide protects human sperm cells from oxidation stress: studies on cases of idiopathic infertility. Biol Reprod 74:659–665CrossRefPubMedGoogle Scholar
  3. American Cancer Society (2016) Cancer Facts and Figures. http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf. Accessed 5 May 2017
  4. Balbi A, Anzaldi M, Macciò C, Aiello C, Mazzei M, Gangemi R, Castagnola P, Miele M, Rosano C, Viale M (2011) Synthesis and biological evaluation of novel pyrazole derivatives with anticancer activity. Eur J Med Chem 46:5293–5309CrossRefPubMedGoogle Scholar
  5. Beck P, Santos JM, Kuhn BL, Moreira DN, Flores AFC, Martins MAP, D’Oca MGM, Piovesan LA (2012) Regiospecific synthesis of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs). J Braz Chem Soc 11:2122–2129CrossRefGoogle Scholar
  6. Bifulco M, Laezza C, Pisanti S, Gazzero P (2006) Cannabinoids and cancer: pros and cons of an antitumour strategy. Brit J Pharmacol 148:123–135CrossRefGoogle Scholar
  7. Bifulco M, Malfitano AM, Pisanti S, Laezza C (2008) Endocannabinoids in endocrine and related tumours. Endocr-Relat Cancer 15:391–408CrossRefPubMedGoogle Scholar
  8. Blázquez C, Carracedo A, Barrado L, Real PJ, Fernández-Luna JL, Velasco G, Malumbres M, Guzmán M (2006) Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J 20:2633–2635CrossRefPubMedGoogle Scholar
  9. Carracedo A, Lorente M, Egia A, Blazquez C, Garcia S, Giroux V, Malicet C, Villuendas R, Gironella M, Gonzáles-Feria L, Piris MA, Iovanna JL, Guzmán M, Velasco G (2006) The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9:301–312CrossRefPubMedGoogle Scholar
  10. Cudaback E, Marrs W, Moeller T, Stella N (2010) The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas. PLoS ONE 5(1):e8702CrossRefPubMedPubMedCentralGoogle Scholar
  11. D’Oca CRM, Coelho T, Marinho TG, Hack CRL, Duarte RC, Silva PA, D’Oca MGM (2010) Synthesis and antituberculosis activity of new fatty acid amides. Bioorganic Med Chem Lett 20:5255–5257CrossRefGoogle Scholar
  12. Fonseca BM, Costa MA, Almada M, Correia-da-Silva G, Teixeira NA (2013) Endogenous cannabinoids revisited: a biochemistry perspective. Prostaglandins Other Lipid Mediat 102-103:13–30CrossRefPubMedGoogle Scholar
  13. Galve-Roperh I, Chiurchiù V, Días-Alonso J, Bari M, Guzmán M, Maccarrone M (2013) Cannabinoid receptor sinaling in progenitor-stem cell proliferation and differentiation. Prog Lipid Res 52:633–650CrossRefPubMedGoogle Scholar
  14. Giuliano M, Pellerito O, Portanova P, Calvaruso G, Santulli A, De Blasio A et al. (2009) Apoptosis induced in HepG2 cells by the synthetic cannabinoid WIN: involvement of the transcription factor PPAR gamma. Biochimie 91:457–465CrossRefPubMedGoogle Scholar
  15. Hamtiaux L, Masquelier J, Muccioli GH, Bouzin C, Feron O, Gallez B, Lambert DM (2012) The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action. BMC Cancer 12:92CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hassan GS, Kadry HH, Abou-Seri SM, Ali MM, Mahmoud AEE (2011) Synthesis and in vitro cytotoxic activity of novel pyrazolo[3,4-d]pyrimidines and related pyrazolehydrazones toward breast adenocarcinoma MCF-7 cell line. Bioorg Med Chem 19:6808–6817CrossRefPubMedGoogle Scholar
  17. Honório KM, Arroio A, Silva ABF (2006) Aspectos Terapêuticos de Compostos da Planta Cannabis sativa. Quim Nova 29(2):218–325CrossRefGoogle Scholar
  18. Jacobsson SO, Wallin T, Fowler CJ (2001) Inhibition of rat C6 glioma cell proliferation by endogenous and synthetic cannabinoids relative involvement of cannabinoid and vanilloid receptors. J Pharmacol Exp Ther 299:951–959PubMedGoogle Scholar
  19. Junior CV, Danuello A, Bolzani VS, Barreiro EJ, Fraga CAM (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14:1829CrossRefGoogle Scholar
  20. Kosmider B, Zyner E, Osiecka R, Ochocki J (2004) Induction of apoptosis and necrosis in A549 cells by the cis-Pt(II) complex of 3-aminoflavone in comparison with cis-DDP. Mutat Res 563:61–70CrossRefPubMedGoogle Scholar
  21. Kumar H, Saini D, Jain S, Jain N (2013) Pyrazole scaffold: a remarkable tool in the development of anticancer agents. Eur J Med Chem 70:248–258CrossRefGoogle Scholar
  22. Ma H, Guo X, Chen W (2015) Inhibitory effects of oleoylethanolamide (OEA) on H2O2-induced human umbilical vein endothelial cell (HUVEC) injury and apolipoprotein E knockout (ApoE-/-) atherosclerotic mice. Int J Clin Exp Pathol 8(6):6301–6311PubMedPubMedCentralGoogle Scholar
  23. Massi P, Vaccani A, Bianchessi S, Costa B, Macchi P, Parolaro D (2006) The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cell Mol Life Sci 63:2057–2066CrossRefPubMedGoogle Scholar
  24. Massi P, Vaccani A, Rubino T, Parolaro D (2003) Cannabinoids and opioids share cAMP pathway in rat splenocytes. J Neuroimmunol 145:46–54CrossRefPubMedGoogle Scholar
  25. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90CrossRefPubMedGoogle Scholar
  26. Mechoulam R, Spatz M, Shohami E (2002) Endocannabinoids and neuroprotection. Sci, STKE 23:129–re5Google Scholar
  27. Moraes MM, Treptow TGM, Teixeira WKO, Piovesan LA, Montes D’Oca MG, Votto APS (2017) Fatty-monastrol derivatives and its cytotoxic effect against melanoma cell growth. Bioorg Chem 72:148–155CrossRefPubMedGoogle Scholar
  28. Nikan M, Nabavi SM, Manayi A (2016) Ligands for cannabinoid receptors, promising anticancer agents. Life Sci 146:124–130CrossRefPubMedGoogle Scholar
  29. Nenajdenko VG, Balenkova ES (2011) Preparation of unsaturated trifluoromethylketones and their application in the synthesis of heterocycles. ARKIVOC 1:246–328Google Scholar
  30. Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Brit J Pharmacol 153:199–215CrossRefGoogle Scholar
  31. Pertwee RG (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 17:1360–1381CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:12CrossRefPubMedPubMedCentralGoogle Scholar
  33. Santos DS, Piovesan LA, Montes D’Oca CR, Hack CRL, Treptow TGM, Rodrigues MO, Vendramini-Costa DB, Ruiz ALTG, Carvalho JE, Montes D’Oca MGM (2015) Antiproliferative activity of synthetic fatty acid amides from renewable resources. Bioorg Med Chem 23:340–347CrossRefPubMedGoogle Scholar
  34. Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H (2008) Cannabinoids for cancer treatment: progress and promise. Cancer Res 68:339–342CrossRefPubMedGoogle Scholar
  35. Sarker KP, Biswas KK, Yamakuchi M, Lee KY, Hahiguchi T, Kracht M, Kitajima I, Maruyama I (2003) ASK1-p38 MAPK/JNK signaling cascade mediates anandamide-induced PC12 cell death. J Neurochem 85:50–61CrossRefPubMedGoogle Scholar
  36. Sauzem PD, Machado P, Rubin MA, Sant’anna GS, Faber HB, Souza AH, Mello CF, Beck P, Burrow RA, Bonacorso HG, Zanatta N, Martins MAP (2008) Design and microwave-assisted synthesis of5-trifluoromethyl-4,5-dihydro-1H-pyrazoles: novel agents with analgesic and anti-inflammatory properties. Eur J Med Chem 43:1237–1247CrossRefPubMedGoogle Scholar
  37. Treptow TGM, Figueiró F, Jandrey EHF, Battastini AMO, Salbego CG, Hoppe JB, Taborda PS, Rosa SB, Piovesan LA, Montes D’Oca CR, Russowsky D, Montes D’Oca MG (2015) Novel hybrid DHPM-fatty acids: synthesis and activity against glioma cell growth in vitro. Eur J Med Chem 95:552–562CrossRefPubMedGoogle Scholar
  38. Trindade GS, Capella MAM, Capella LS, Affonso-Mitidier OR, Rumjanek VM (1999) Differences in sensitivity to UVC, UVB and UVA radiation of a multidrug-resistant cell line overexpressing P-glycoprotein. Photochem Photobiol 69:694–699CrossRefPubMedGoogle Scholar
  39. Velasco G, Sánchez C, Guzmán M (2012) Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer 12:436–444CrossRefPubMedGoogle Scholar
  40. White AC, Munson JA, Munson AE, Carchman RA (1976) Effects of Δ9-tetrahydrocannabinol in lewis lung adenocarcinoma cells in tissue culture. J Natl Cancer Inst 56:655–658CrossRefPubMedGoogle Scholar
  41. Zolese G, Bacchetti T, Ambrosini A, Wozniak M, Bertoli E, Ferrett G (2005) Increased plasma concentrations of palmitoylethanolamide, endogenous fatty acid amide, affect oxidative damage of human low-density lipoproteins: an in vitro study. Atherosclerosis 182:47–55CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Priscila Antiqueira-Santos
    • 1
    • 2
  • Daiane S. dos Santos
    • 3
  • Carolina R. L. Hack
    • 3
  • Alex Fabiani C. Flores
    • 4
  • Marcelo G. Montes D’Oca
    • 3
  • Luciana A. Piovesan
    • 3
    • 5
  • Luiz Eduardo M. Nery
    • 1
    • 2
  • Ana Paula S. Votto
    • 1
    • 2
  1. 1.Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências BiológicasUniversidade Federal do Rio Grande–FURGRio GrandeBrazil
  2. 2.Laboratório de Cultura Celular, Instituto de Ciências Biológicas, FURGRio GrandeBrazil
  3. 3.Laboratório Kolbe de Síntese Orgânica, Escola de Química e Alimentos, FURGRio GrandeBrazil
  4. 4.Escola de Química e Alimentos, FURGRio GrandeBrazil
  5. 5.Nanobusiness Informação e Inovação Ltda, Incubadora de Projetos, Instituto Nacional de Metrologia, Qualidade e Tecnologia–INMETRODuque de CaxiasBrazil

Personalised recommendations