Advertisement

Medicinal Chemistry Research

, Volume 26, Issue 3, pp 640–649 | Cite as

Synthesis, antimicrobial activity and cytotoxic investigation of novel trifluoromethylated tetrazolo[1,5-a]pyrimidines

  • Elisandra Scapin
  • Clarissa P. FrizzoEmail author
  • Leticia V. Rodrigues
  • Geórgia C. Zimmer
  • Rodrigo A. Vaucher
  • Michelle R. Sagrillo
  • Janice L. Giongo
  • Carlos A. M. Afonso
  • Patrícia Rijo
  • Nilo Zanatta
  • Helio G. Bonacorso
  • Marcos A. P. Martins
Original Research

Abstract

A series of novel trifluoromethylated tetrazolo[1,5-a]pyrimidines were easily prepared via a highly regioselective cyclocondensation reaction between β-alkoxyvinyl trifluoromethyl ketones [CF3C(O)CH=C(R)OMe] (in which R = Ph, 4-F–C6H4, 4-Cl–C6H4, 4-Br–C6H4, 4-I–C6H4, 4-CH3–C6H4, 4-OCH3–C6H4, Thien-2-yl, 4-Ph–C6H4, Me) and 5-aminotetrazole, using conventional heating in an oil bath or microwave irradiation. The results showed that when ionic liquid was used as the reaction medium, the reaction time drastically decreased and the yield improved. Additionally, all the newly synthesized compounds were evaluated to determine their antimicrobial activity. Two of the compounds tested were the most promising because they displayed activity against the Gram-positive and Gram-negative bacteria used in the tests, and they were moderately active against the yeast Candida albicans. And finally, the cytotoxicity of lymphocytes of the two compounds was evaluated by using MTT assay. Results showed at active concentration such compounds would be safe.

Keywords

Antimicrobial activities Tetrazolo[1,5-a]pyrimidine Trifluoromethyl β-alcoxyvinylketones Cytotoxicity activity 

Notes

Acknowledgements

The authors are grateful for the financial support from: the National Council for Scientific and Technological Development (CNPq) (Universal/Proc. 474895/2013-0; the Rio Grande do Sul Foundation for Research Support (FAPERGS) (Proc. 2262-2551/14-1 and 2290-2551/14-1); and the Coordination for Improvement of Higher Education Personnel (CAPES/PROEX). Fellowships from CNPq (M. A. P. M., H. G. B., N. Z., and C. P. F.) and CAPES (L. V. R. and G. C. Z.) are also acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.

Supplementary material

44_2017_1783_MOESM1_ESM.doc (2.9 mb)
Supplementary Information

References

  1. Anhar Abdel-Aziem, Marwa Sayed El-Gendy, Abdou Osman Abdelhamid (2012) Synthesis and antimicrobial activities of pyrido[2,3-d]pyrimidine, pyridotriazolopyrimidine, triazolopyrimidine, and pyrido[2,3-d:6,5d']dipyrimidine derivatives. European Journal of Chemistry 3(4):455–460CrossRefGoogle Scholar
  2. Balsalobre LC, Dropa M, Brazilian MHM (2014) An overview of antimicrobial resistance and its public health significanc. Braz J Microbiol 45:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barbosa TM, Levy SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resist Updat 3:303–311CrossRefPubMedGoogle Scholar
  4. Bonacorso HG, Cechinel CA, Oliveira MR, Costa MB, Martins MAP, Zanatta N, Flores AFC (2005) An efficient and regiospecific preparation of trifluoromethyl substituted 4-(1H-pyrazol-1-yl)-7-chloroquinolines. J Heterocycl Chem 42:1055–1061CrossRefGoogle Scholar
  5. Bonacorso HG, Lopes IS, Wastowski AD, Zanatta N, Martins MAP (2003) Cyclocondensation reaction of 4-aryl-4-methoxy-1,1,1-trifluoro-3-buten-2-ones with urea: synthesis of novel 6-aryl(5-methyl)-4-trifluoromethyl-2(1H)-pyrimidinones. J Fluorine Chem 20:29–32CrossRefGoogle Scholar
  6. Cmoch P (2002) Multinuclear magnetic resonance study of the structure and tautomerism of azide and iminophosphorane derivatives of chloropyridazines. Magn Reson Chem 40:507–516CrossRefGoogle Scholar
  7. Cmoch P, Stefaniak L, Webb GA (1997) NMR Studies of the Equilibria Produced by 6- and 8-Substituted Tetrazolo[1,5-a]pyridines. Magn Reson Chem 35:237–242CrossRefGoogle Scholar
  8. Cunico W, Cechinel CA, Bonacorso HG, Martins MAP, Zanatta N, Souza MVN, Freitas IO, Soares RPP, Krettli AU (2006) Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues. Bioorg Med Chem Lett 16:649–653CrossRefPubMedGoogle Scholar
  9. Farghaly TA, Hassaneen HME (2013) Synthesis of pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-ones as potential antimicrobial agents. Arch Pharm Res 36:564–572CrossRefPubMedGoogle Scholar
  10. Frizzo CP, Scapin E, Marzari MRB et al. (2014) Ultrasound irradiation promotes the synthesis of a new 1,2,4- triazolo[1,5-a]pyrimidine. Ultrason Sonochem 21:958–962CrossRefPubMedGoogle Scholar
  11. Gaussian R version 09 Revision A, Frisch MJ, Trucks GW et al. (2009) Gaussian, Inc., Wallingford CTGoogle Scholar
  12. Gomha SM, Hassaneen HME (2011) Synthesis and Antimicrobial Activity of Some New Pyrazoles, Fused Pyrazolo[3,4-d]-pyrimidine and 1,2-Dihydroimidazo-[2,1-c][1,2,4]triazin-6-one Derivatives. Molecules 16:6549–6560CrossRefPubMedGoogle Scholar
  13. Kapil A (2005) The challenge of antibiotic resistance: need to contemplate. Indian J Med Res 121:83–91PubMedGoogle Scholar
  14. Khafagy MM, Abd El-Wahab AH, Eid FA et al. (2002) Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco 57:715–722CrossRefPubMedGoogle Scholar
  15. Krivopalov VP, Mamatyuk VI, Nikolaenkova EB (1995) Effect of intramolecular hydrogen bond on the azide-tetrazole equilibrium of 5-(2”-hydroxyphenyl)tetrazolo[1,5-a]pyrimidine,-tetrazolo[1,5-c]pyrimidine,-tetrazolo[1,5-c]quinazoline, and 7-(2”-hydroxyphenyl)tetrazolo [1,5-c]pyrimidine. Russ Chem Bull 44:1435–1443CrossRefGoogle Scholar
  16. Ling LL, Schneider T, Peoples AJ et al. (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459CrossRefPubMedGoogle Scholar
  17. Lobo MM, Oliveira SM, Brusco I et al. (2015) Regioselectively controlled synthesis of 3(5)-(trifluoromethyl) pyrazolylbenzenesulfonamides and their effects on a pathological pain model in mice. Eur J Med Chem 102:143–152CrossRefPubMedGoogle Scholar
  18. Lobo MM, Viau CM, Santos JM et al. (2015) Synthesis and cytotoxic activity evaluation of some novel 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2-ones in human cancer cells. Eur J Med Chem 101:836–842CrossRefPubMedGoogle Scholar
  19. Martins DM, Torres BG, Spohr PR et al. (2008) Antioxidant potential of new pyrazoline derivatives to prevent oxidative damage. Basic Clin Pharmacol Toxicol 104:107–112CrossRefPubMedGoogle Scholar
  20. Martins MAP, Scapin E, Frizzo CP et al. (2009) 2-Methyl-7-substituted pyrazolo[1,5-a]pyrimidines: highly regioselective synthesis and bromination. J Braz Chem Soc 20:205–213CrossRefGoogle Scholar
  21. Milano J, Oliveira SM, Rossato MF et al. (2008) Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. Eur J Pharmacol 581:86–96CrossRefPubMedGoogle Scholar
  22. Moreira DN, Frizzo CP, Longhi K et al. (2008) An efficient synthesis of 1-cyanoacetyl-5-halomethyl-4,5-dihydro-1H-pyrazoles in ionic liquid. Monatsh Chem 139:1049–1054CrossRefGoogle Scholar
  23. Mossmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63CrossRefGoogle Scholar
  24. Mostafa YAH, Hussein MA, Radwan AA et al. (2008) AN Synthesis and antimicrobial activity of certain new 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Arch Pharm Res 31:279–293CrossRefPubMedGoogle Scholar
  25. Oliveira SM, Gewehr C, Dalmolin GD et al. (2008) Antinociceptive effect of a novel tosylpyrazole compound in mice. Basic Clin Pharmacol Toxicol 104:122–129CrossRefPubMedGoogle Scholar
  26. Raju C, Madhaiyan K, Uma R et al. (2012) Antimicrobial and antioxidant activity evaluation of tetrazolo[1,5-a]pyrimidines: a simple diisopropylammonium trifluoroacetate mediated synthesis. RSC Advances 2:11657–11663CrossRefGoogle Scholar
  27. Ramos DF, Fiss G, Frizzo CP et al. (2014) Activity of 4,5-dihydro-1H-pyrazoles against Mycobacterium tuberculosis and nontuberculous mycobacteria. Int J Antimicrob Ag 43:481–483CrossRefGoogle Scholar
  28. Sauzem PD, Machado P, Rubin MA et al. (2008) Design and microwave-assisted synthesis of 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles: novel agents with analgesic and anti-inflammatory properties. Eur J Med Chem 43:1237–1247CrossRefPubMedGoogle Scholar
  29. Sauzem PD, Sant’Anna GS, Machado P et al. (2009) Effect of 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles on chronic inflammatory pain model in rats. Eur J Pharmaco 616:91–100CrossRefGoogle Scholar
  30. Shestakova TS, Shenkarev ZO, Deev SL et al. (2013) Long-Range 1H–15N J couplings providing a method for direct studies of the structure and Azide–Tetrazole equilibrium in a series of azido-1,2,4-triazines and Azidopyrimidines. J Org Chem 78:6975–6982CrossRefPubMedGoogle Scholar
  31. Silva PEA, Ramos DF, Bonacorso HG et al. (2008) Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl) pyrazoles. Int J Antimicrob Ag 32:139–144CrossRefGoogle Scholar
  32. Suresh L, Poornachandra Y, Kanakaraju S et al. (2015) One-pot three-component domino protocol for the synthesis of novel pyrano[2,3-d]pyrimidines as antimicrobial and anti-biofilm agents. Org Biomol Chem 13:7294–7306CrossRefPubMedGoogle Scholar
  33. Wang H, Lee M, Peng Z et al. (2015) Synthesis and Evaluation of 1,2,4-Triazolo[1,5-a]pyrimidines as Antibacterial Agents Against Enterococcus faecium. J Med Chem 58:4194–4203CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wayne PA (2011) Performance standards for antimicrobial susceptibility testing: twenty first international supplement M100-S21. Clinical and laboratory standards institute, CLSIGoogle Scholar
  35. Zanatta N, Amaral SS, Santos JM et al. (2008) Convergent synthesis ans cruzain inhibitory activity of novel 2-(N’-benzylidenehydrazino)-4-trifluoromethyl-pirimidines. Bioorg Med Chem Lett 16:10236–10243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Elisandra Scapin
    • 1
    • 2
  • Clarissa P. Frizzo
    • 1
    Email author
  • Leticia V. Rodrigues
    • 1
  • Geórgia C. Zimmer
    • 1
  • Rodrigo A. Vaucher
    • 3
  • Michelle R. Sagrillo
    • 3
  • Janice L. Giongo
    • 4
  • Carlos A. M. Afonso
    • 5
  • Patrícia Rijo
    • 6
  • Nilo Zanatta
    • 1
  • Helio G. Bonacorso
    • 1
  • Marcos A. P. Martins
    • 1
  1. 1.Núcleo de Química de Heterociclos, Departamento de QuímicaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Laboratório de QuímicaUniversidade Federal do TocantinsPalmasBrazil
  3. 3.Programa de Pós-graduação em NanociênciasCentro Universitário FranciscanoSanta MariaBrazil
  4. 4.Faculdade de FarmáciaUniversidade Regional Integrada do Alto Uruguai e das Missões – URI, Campus SantiagoSantiagoBrazil
  5. 5.Faculdade de FarmáciaUniversidade de LisboaLisboaPortugal
  6. 6.CBIOS - Universidade Lusófona Research Center for Biosciences & Health Technologies, Universidade LusófonaLisboaPortugal

Personalised recommendations