Advertisement

Medicinal Chemistry Research

, Volume 25, Issue 11, pp 2567–2577 | Cite as

Protective effects of three luteolin derivatives on aflatoxin B1-induced genotoxicity on human blood cells

  • Furkan Orhan
  • Selçuk ÇekerEmail author
  • Mustafa Anar
  • Guleray Agar
  • Tulin Arasoglu
  • Medine Gulluce
Original Research

Abstract

In the present study, we aimed to investigate the genotoxic and anti-genotoxic potencies of three luteolin derivatives (luteolin-7-O-glucoside, luteolin-7-O-rutinoside and luteolin-7-O-glucuronide) by using human cells. In the micronucleus test, the human lymphocytes were exposed to aflatoxin B1, the luteolin derivatives and a mixture of the two for 72 h. Furthermore, we have evaluated the levels of antioxidants of human whole blood plasma in order to clarify the possible mechanisms that may contribute to the anti-genotoxic activity of the luteolin derivatives. According to the results obtained from the micronucleus test, the highest protection rates for luteolin-7-O-glucoside, luteolin-7-O-rutinoside and luteolin-7-O-glucuronide against aflatoxin B1 were 32.09, 35.55 and 37.50 %, respectively. Similarly, these three luteolin derivatives ameliorated the level of antioxidants altered from aflatoxin B1.

Keywords

Luteolin derivatives Anti-genotoxic potential Antioxidants Micronucleus 

Notes

Acknowledgments

This study was supported by The Scientific and Technological Research Council of Turkey

(TUBITAK: 107T203).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

44_2016_1681_MOESM1_ESM.jpg (884 kb)
Supplementary Information
44_2016_1681_MOESM2_ESM.jpg (873 kb)
Supplementary Information
44_2016_1681_MOESM3_ESM.jpg (878 kb)
Supplementary Information
44_2016_1681_MOESM4_ESM.jpg (1.8 mb)
Supplementary Information
44_2016_1681_MOESM5_ESM.jpg (1.9 mb)
Supplementary Information
44_2016_1681_MOESM6_ESM.jpg (1.9 mb)
Supplementary Information

References

  1. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76CrossRefPubMedGoogle Scholar
  2. Anderson IB, Mullen WH, Meeker JE, Khojasteh-Bakht SC, Oishi S, Nelson SD, Blanc PD (1996) Pennyroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. Ann Intern Med 124:726–734CrossRefPubMedGoogle Scholar
  3. Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N (2007) SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 14:827–845CrossRefPubMedGoogle Scholar
  4. Anar M, Aslan A, Alpsoy L, Kizil HE, Agar G (2016a) Antigenotoxic and the antioxidant capacity of total extract of two lichens. Fresenius Environ Bull 25:684–691Google Scholar
  5. Anar M, Orhan F, Alpsoy L, Gulluce M, Aslan A, Agar G (2016b) The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. Toxicol Ind Health 32:721–729CrossRefPubMedGoogle Scholar
  6. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, Barale R (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28:625–631CrossRefPubMedGoogle Scholar
  8. Busby WF, Wogan GW (1984) Aflatoxins, 2nd edn. American Chemical Society, Washington, DC., 945Google Scholar
  9. Cakir A, Mavi A, Kazaz C, Yildirim A, Kufrevioglu OI (2006) Antioxidant activities of the extracts and components of Teucrium orientale L. var. orientale. Turk J Chem 30:483–494Google Scholar
  10. Cantero G, Campanella C, Mateos S, Cortes F (2006) Topoisomerase II inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin. Mutagenesis 21:321–5CrossRefPubMedGoogle Scholar
  11. Ceker S, Agar G, Nardemir G, Anar M, Kizil HE, Alpsoy L (2012) Investigation of anti-oxidative and anti-genotoxic effects of Origanum vulgare L. essential oil on human lymphocytes in vitro. J Essent Oil Bear Plants 15:997–1005CrossRefGoogle Scholar
  12. Choi KC, Chung WT, Kwon JK, Jang YS, Yu JY, Park SM, Lee JC (2010) Chemoprevention of a flavonoid fraction from Rhus verniciflua stokes on aflatoxin B1-induced hepatic damage in mice. J Appl Microbiol 31:150–156Google Scholar
  13. Corcuera LA, Arbillaga L, Vettorazzi A, Azqueta A, López de Cerain A (2011) Ochratoxin A reduces aflatoxin B1 induced DNA damage detected by the comet assay in Hep G2 cells. Food Chem Toxicol 49:2883–2889CrossRefPubMedGoogle Scholar
  14. Danihelová M, Viskupičová J, Šturdík E (2012) Lipophilization of flavonoids for their food, therapeutic and cosmetic applications. Acta Chim Slov 5:59–69Google Scholar
  15. Gil ES, Couto RO (2013) Flavonoid electrochemistry: a review on the electroanalytical applications. Rev Bras Farmacogn 23:542–558CrossRefGoogle Scholar
  16. Guengerich FP, Johnsen W, Ueng Yamazaki H, Shimada T (1996) Involvement of cytochrome P450, glutathione S-transferase and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ Health Persp 104:557–562Google Scholar
  17. Kim YS, Kim YH, Noh JR, Cho ES, Park JH (2011) Protective effect of Korean red ginseng against aflatoxin B(1)-induced hepatotoxicity in rat. J Ginseng Res 35:243–249CrossRefPubMedPubMedCentralGoogle Scholar
  18. Nagy M, Križková L, Mučaji P, Kontšeková Z, Šeršeň S, Krajčovič J (2009) Antimutagenic activity and radical scavenging activity of water infusions and phenolics from Ligustrum plants leaves. Molecules 14:509–518CrossRefPubMedGoogle Scholar
  19. Nissler L, Gebhardt R, Berger S (2004) Flavonoid binding to a multi-drug-resistance transporter protein: an STD-NMR study. Anal Bioanal Chem 379:1045–1049CrossRefPubMedGoogle Scholar
  20. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefPubMedGoogle Scholar
  21. Orhan F, Baris O, Yanmis D, Bal T, Guvenalp Z, Gulluce M (2012) Isolation of some luteolin derivatives from Mentha longifolia (L.) Hudson subsp. longifolia and determination of their genotoxic potencies. Food Chem 135:764–769CrossRefPubMedGoogle Scholar
  22. Orhan F, Gulluce M, Ozkan H, Alpsoy L (2013) Determination of the antigenotoxic potencies of some luteolin derivatives by using a eukaryotic cell system, Saccharomyces cerevisiae. Food Chem 141:366–372CrossRefPubMedGoogle Scholar
  23. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169PubMedGoogle Scholar
  24. Ringl A, Prinz S, Huefner A, Kurzmann M, Kopp B (2007) Chemosystematic value of flavonoids from Crataegus x macrocarpa (Rosaceae) with special emphasis on(R)- and (S)-eriodictyol-7-O-glucuronide and luteolin-7-O-glucuronide. Chem Biodivers 4:154–162CrossRefPubMedGoogle Scholar
  25. Salas MP, Celiz G, Geronazzo H, Daz M, Resnik SL (2011) Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem 124:1411–1415CrossRefGoogle Scholar
  26. Sawhney DS, Vadehra DV, Baker RC (1973) The metabolism of 14C aflatoxins in laying hens. Poult Sci 52:1302–1309CrossRefPubMedGoogle Scholar
  27. Sedmikova M, Reisnerora H, Dufkova Z, Burta I, Jilek F (2001) Potential hazard of simultaneous occurrence of aflatoxins B1 and ochratoxin A. Vet Med 46:169–174Google Scholar
  28. Seelinger G, Merfort I, Wölfle U, Schempp CM (2008) Anti-carcinogenic effects of the flavonoid luteolin. Molecules 13:2628–51CrossRefPubMedGoogle Scholar
  29. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–91CrossRefPubMedGoogle Scholar
  30. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem Lab Med 34:497–500Google Scholar
  31. Verma RJ (2004) Aflatoxin cause DNA damage. Int J Hum Genet 4:231–236Google Scholar
  32. Viskupičova J, Danihelova M, Ondrejovič M, Liptaj T, Šturdik E (2010) Lipophilic rutin derivatives for antioxidant protection of oil-based foods. Food Chem 123:45–50CrossRefGoogle Scholar
  33. Wang M, Simon JE, Aviles IF, He K, Zheng QY, Tadmor Y (2003) Analysis of actioxidative phenolic compounds in Artichoke (Cynara scolymus L.). J Agric Food Chem 51:601–608CrossRefPubMedGoogle Scholar
  34. Wild CP, Gong YY (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31:71–82CrossRefPubMedGoogle Scholar
  35. Wu F, Khlangwiset P (2010) Health economic impacts and cost-effectiveness of aflatoxin reduction strategies in Africa: case studies in biocontrol and postharvest interventions. Food Addit Contam 27:496–509CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Furkan Orhan
    • 1
  • Selçuk Çeker
    • 1
    Email author
  • Mustafa Anar
    • 2
  • Guleray Agar
    • 3
  • Tulin Arasoglu
    • 4
  • Medine Gulluce
    • 3
  1. 1.Central Research and Application LaboratoriesAgri Ibrahim Cecen UniversityAgriTurkey
  2. 2.Faculty of Science, Department of Molecular Biology and GeneticsAtaturk UniversityErzurumTurkey
  3. 3.Faculty of Science, Department of BiologyAtaturk UniversityErzurumTurkey
  4. 4.Molecular Biology and GeneticsYıldız Technical UniversityIstanbulTurkey

Personalised recommendations